InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification			Page 1 of 25	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

Customer Approved Specification

To: 苏州与来视讯科技有限公司

Product Name: P101NWWB R7

Document Issue Date: 2019/11/29

Customer	InfoVision Optoelectronics
<u>SIGNATURE</u>	SIGNATURE REVIEWED BY CQM
	PREPARED BY FAE
Please return 1 copy for your confirmation	
with your signature and comments.	

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein. FQ-7-30-0-009-03D

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification				2 of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

Revision	Date	Page	Old Description	New Description	Remark
00	2019/11/29	All		Final Versions	-
					X

Document Name	P101NWWB R7 Customer Approved Specification				3 of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

CONTENTS

1.0	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	6
3.0	OPTICAL CHARACTERISTICS	7
4.0	ELECTRICAL CHARACTERISTICS	11
5.0	MECHANICAL CHARACTERISTICS	19
6.0	RELIABILITY CONDITIONS	20
7.0	PACKAGE SPECIFICATION	21
	LOT MARK	
	GENERAL PRECAUTION	

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification			Page 4 of 2	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

1.0 General Descriptions

1.1 Introduction

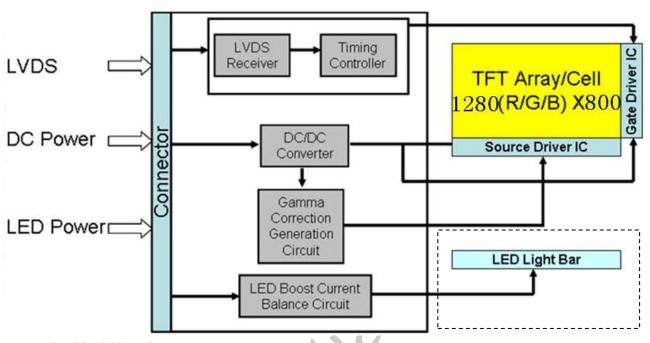
The P101NWWB R7 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) open-cell that uses amorphous silicon TFT as a switching device. This TFT LCD has a 10.1 inch diagonally measured active display area with WXGA resolution (1280 horizontal by 800 vertical pixels array).

1.2 Features

- Supported WXGA Resolution
- LVDS Interface
- Compatible with RoHS Standard

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	10.1	inch
Active Area (H x V)	216.96 x135.60	mm
Number of Pixels (H x V)	1280 x800	-
Pixel Pitch (H x V)	0.1695×0.1695	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
Contrast Ratio	800 (Typ.)	-
Response Time	25 (Typ.)	ms
Input Voltage	3.3 (Typ.)	V
Power Consumption	1.2(Typ.)	W
Weight	85 (Typ.)	g
Outline Dimension (H x V x D)	225.26(Typ.) ×145.4(Typ.)×1.6(Max)	mm
Electrical Interface (Logic)	LVDS	-
Support Color	16.7 M	-
NTSC	45 (Typ.)	%
Viewing Direction	All	-
Surface Treatment	glare+3H	-
Transmittance	5.08(Typ.)	%


InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification				of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

1.4 Functional Block Diagram

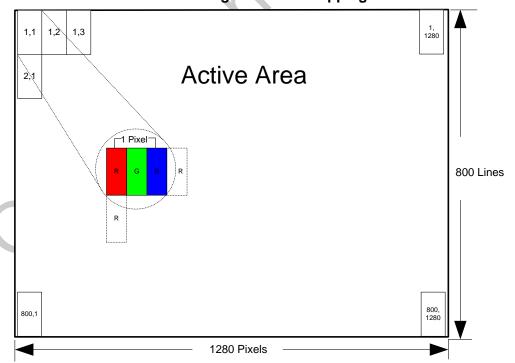

Figure 1 shows the functional block diagram of the open-cell.

Figure 1 Block Diagram

1.5 Pixel Mapping

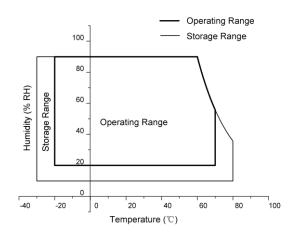
Figure 2 Pixel Mapping

Document Name	P101NWWB R7 Customer Approved Specification				of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V_{DD}	-0.3	4.0	V	
Logic Input Signal Voltage	V _{Signal}	-0.3	4.0	V	(1),(2),(3),(4)
Operating Temperature	Tgs	-20	70	$^{\circ}$ C	(1),(2),(3),(4)
Storage Temperature	Ta	-30	80	$^{\circ}\!$	70,


Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55± 10%RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 39° C, and no condensation of water. Besides, protect the open-cell from static electricity.

Figure 3 Absolute Ratings of Environment of the open-cell

InfoVision Optoelectronics (Kunshan)Co., Ltd.

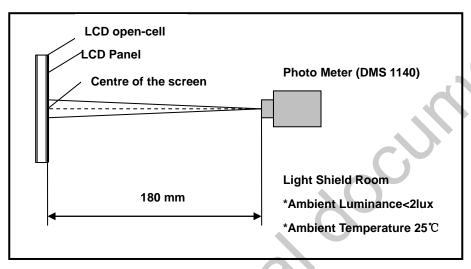
Document Name	P101NWWB R7 Customer Approved Specification				7 of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

3.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

Table 2 Optical Characteristics

Item	Conditions		Min.	Тур.	Max.	Unit	Note
	Horizontal	θ *+	75	85	-		X
Viewing Angle	ПОПДОПІАІ	θ _{x-}	75	85	-	dograd	(1) (2) (2) (6) (7)
(CR≥10)	Vertical	θ _{y+}	75	85	-	degree	(1),(2),(3),(6),(7)
	vertical	θ _{y-}	75	85	-		
Contrast Ratio	Center		600	800	-	-	$(1),(3),(6),(7)\theta x=\theta y=0^{\circ}$
Response Time	Rising + Fa	lling	ı	25	50	ms	$(1),(4),(6),(7)\theta x=\theta y=0^{\circ}$
Transmittance	ı		4.30	5.08	-	%	$(1),(5),(7),(8)\theta x=\theta y=0^{\circ}$
	Red	X		0.599			
	Red y Green x			0.326			
OF Calar				0.300		-	
CF Color	Green	у	Тур.	0.546	Тур.	-	(4) (5) (7)
Chromaticity	Blue	Х	-0.015	0.149	+0.015	-	(1),(5),(7)
(CIE1931)	Blue	у		0.181		-	θx=θy=0°
	White	Х		0.301		-	
	White	у		0.341		-	
NTSC	-	7	42	45	-	%	



Document Name	P101NWWB R7 Customer Approved Specification			Page 8 of 25	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

Note (1) Measurement Setup:

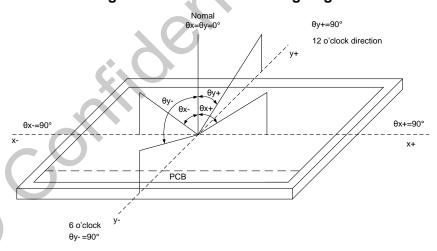

The LCD module should be stabilized at given ambient temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

Figure 4 Measurement Setup

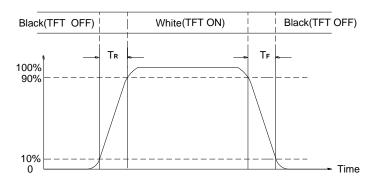
Note (2) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle

Note (3) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255, L0: Luminance of gray level 0

Document Name	P101NWWB R7 Customer Approved Specification			Page 9 of 25	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

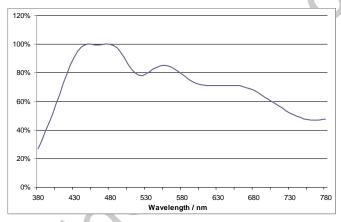

Note (4) Definition of Response Time (T_R, T_F)

Figure 6 Definition of Response Time

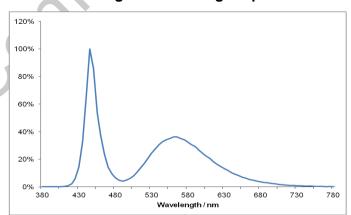

Note (5) C-Light Spectrum

Figure 7 C-Light Spectrum

Note (6) Light source is the BL which is supplied by IVO.

Figure 8 Back Light Spectrum

Document Name	P101NWWB R7 Customer Approved Specification			Page 10 of 2	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

Note (7) All optical data based on IVO given system & nominal parameter & testing machine in this document.

Note (8) Definition of Transmittance

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification			Page 11 of 25	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

4.0 Electrical Characteristics

4.1 Interface Connector

Table 3 Signal Connector Type

Item	Description	
Manufacturer / Type	Starconn / 300E40-0010RA-G3	
Mating Receptacle / Type (Reference)	111B40-1211TA-G3 or Compatible	

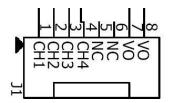
Table 4 Signal Connector Pin Assignment

Pin#	Signal Name	Description	Remarks
1	NC	No Connection	.
2	VDD	Power Supply	-
3	VDD	Power Supply	-
4	VDD_EDID	VDD_EDID	-
5	SCL_EDID	SCL_EDID	-
6	SDA_EDID	SDA_EDID	-
7	NC	No Connection	-
8	LV0N	-LVDS Differential Data Input	_
9	LV0P	+LVDS Differential Data Input	-
10	GND	Ground	-
11	LV1N	-LVDS Differential Data Input	-
12	LV1P	+LVDS Differential Data Input	
13	GND	Ground	-
14	LV2N	-LVDS Differential Data Input	
15	LV2P	+LVDS Differential Data Input	-
16	GND	Ground	-
17	LVCLKN	-LVDS Differential Clock Input	-
18	LVCLKP	+LVDS Differential Clock Input	
19	GND	Ground	-
20	LV3N	-LVDS Differential Data Input	_
21	LV3P	+LVDS Differential Data Input	-
22	GND	Ground	-
23	LED_GND	Ground for LED Driving	-
24	LED_GND	Ground for LED Driving	-
25	LED_GND	Ground for LED Driving	-
26	NC	No Connection	-

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification			Page 12 of 2	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

27	LED_PWM	PWM Input Signal for LED Driver	-
28	LED_EN	LED Enable Pin	-
29	NC	Reserved For CABC	-
30	NC	No Connection	
31	LED_VCC	Power Supply for LED Driver	
32	LED_VCC	Power Supply for LED Driver	X
33	LED_VCC	Power Supply for LED Driver	
34	NC	No Connection	
35	BIST	BIST pin	Active high(3.3V)
36	NC	No Connection	
37	NC	No Connection	
38	NC	No Connection	
39	NC	No Connection)
40	NC	No Connection	


Table 5 LED Connector Name / Designation

Item	Description
Manufacturer / Type	Starconn/ 6700S08-000000-G2-R

Table 6 LED Connector Pin Assignment

Pin No.	Symbol	Description	Remarks
1	IRLED1	LED current sense for string1	•
2	IRLED2	LED current sense for string2	•
3	IRLED3	LED current sense for string3	•
4	IRLED4	LED current sense for string4	•
5	NC	NC	-
6	NC	NC	-
7	VLED	LED power supply	
8	VLED	LED power supply	

Figure 9 LED Connector

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification			Page 13 of 2	
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics For LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

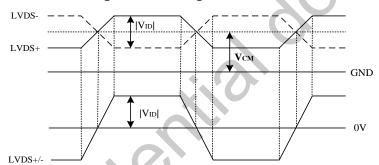
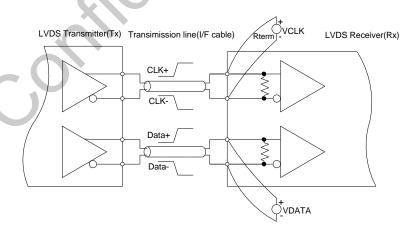
Table 7 LVDS Receiver Electrical Characteristics

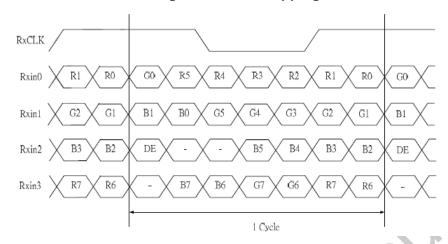
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	ı	1	+100	mV	V _{CM} =+1.2V
Differential Input Low Threshold	Vtl	-100	ı	ı	mV	V _{CM} =+1.2V
Magnitude Differential Input Voltage	V _{ID}	100	-	600	mV	
Common Mode Voltage	V _{CM}	VID /2	1	2.4- V _{ID} /2	٧	-

Note (1) Input signals shall be low or Hi- resistance state when VDD is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Figure 10 Voltage Definitions

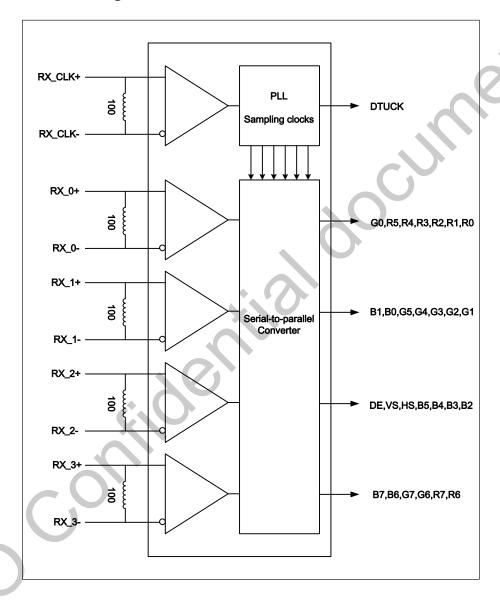




Figure 11 Measurement System

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Cust	P101NWWB R7 Customer Approved Specification			
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

Figure 12 Data Mapping



Document Name	P101NWWB R7 Customer Approved Specification				5 of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

4.2.2 LVDS Receiver Internal Circuit

Figure 13 shows the internal block diagram of the LVDS receiver. This LCD open-cell equips termination resistors for LVDS link.

Figure 13 LVDS Receiver Internal Circuit

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Cust	101NWWB R7 Customer Approved Specification			
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

4.3 Interface Timings

Table 8 Interface Timings

Parameter	Symbol	Min.	Тур.	Max.	Unit
LVDS Clock Frequency	Fclk	68.9	71.1	73.4	MHz
H Total Time	HT	1410	1440	1470	Clocks
H Active Time	HA	1280	1280	1280	Clocks
V Total Time	VT	815	823	833	Lines
V Active Time	VA	800	800	800	Lines
Frame Rate	FV	-	60		Hz

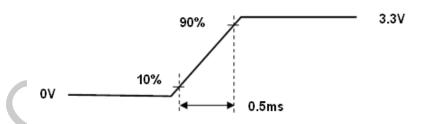
Document Name	P101NWWB R7 Cust	01NWWB R7 Customer Approved Specification			
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

4.4 Input Power Specifications

Input power specifications are as follows.

Table 9 Input Power Specifications

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
LCD Drive Voltage (Logic)		V_{DD}	3.0	3.3	3.6	V	(1),(2)
VDD Current	White Pattern	I _{DD}	-	-	0.364	Α	5
VDD Power	White Pattern	D			1.2	W	(1),(3)
Consumption	Wille Fallein	P_{DD}	-	-	1.2	VV	
Rush Current		I _{Rush}	-	-	1.5	Α	(1),(4)
Allowable Logic/LCD		\/			200	m//	(4)
Drive Ripple Voltage		V_{VDD-RP}	-	-	300	mV	(1)


Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55±10%RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) The specified V_{DD} current and power consumption are measured under the V_{DD} = 3.3 V, F_{V} = 60 Hz condition and white pattern.

Note (4) The figures below is the measuring condition of V_{DD} . Rush current can be measured when T_{RUSH} is 0.5 ms.

Figure 14 V_{DD} Rising Time

EΝ

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Customer Approved Specification				8 of 25
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

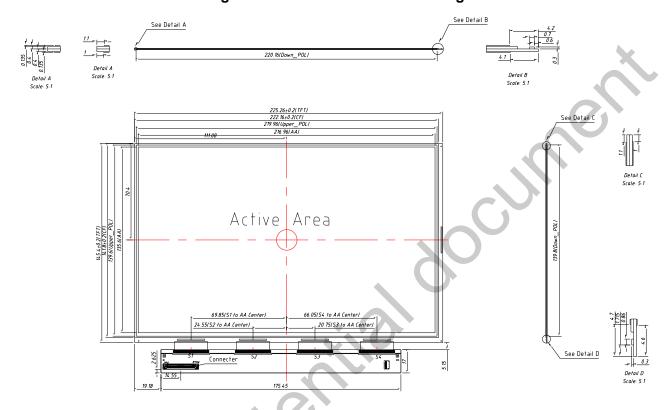
4.5 Power ON/OFF Sequence

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when VDD voltage is off.

Figure 15 Power Sequence

Table 10 Power Sequencing Requirements

Parameter	Symbol	Unit	Min	Тур.	Max	
VIN Rise Time	T1	Ms	0.5		10	
VIN Good to Signal Valid	T2	Ms	30		90	
Signal Valid to Backlight On	Т3	Ms	200			
Backlight Power On Time	T4	Ms	0.5			
Backlight VDD Good to System PWM On	T5	Ms	10			
System PWM ON to Backlight Enable ON	T6	Ms	10			
Backlight Enable Off to System PWM Off	T7	Ms	0			
System PWM Off to B/L Power Disable	T8	Ms	10			
Backlight Power Off Time	Т9	Ms	0.5	10	30	
Backlight Off to Signal Disable	T10	Ms	200			
Signal Disable to Power Down	T11	Ms	0		50	
VIN Fall Time	T12	Ms	0.5	10	30	
Power Off	T13	ms	500			



Document Name	P101NWWB R7 Cust	P101NWWB R7 Customer Approved Specification			
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

5.0 Mechanical Characteristics

5.1 Outline Drawing

Figure 16 Reference Outline Drawing

5.2 Dimension Specifications

Table 11 open-cell Dimension Specifications

Item		Min.	Тур.	Max.	Unit
Width		225.06	225.26	225.46	mm
Height		145.2	145.4	145.6	mm
	Glass(With Polarizer)	-	1.07	1.2	mm
Thickness	PCB	0.3	0.4	0.5	mm
	Component	-	-	1.1	mm
Weight		-	85	-	g

Document Name	P101NWWB R7 Cust	P101NWWB R7 Customer Approved Specification			
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

6.0 Reliability Conditions

Table 12 Reliability Condition

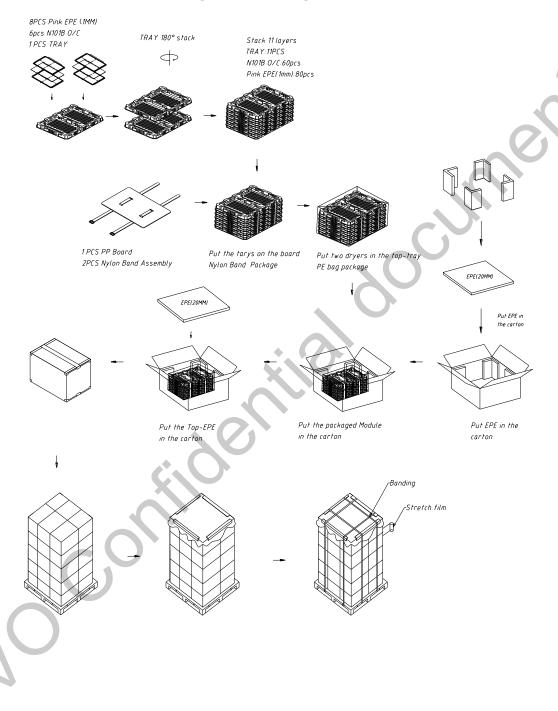
Item	Package		Test Conditions	Note	
High Temperature/High Humidity Operating Test	Open-cell	T _{gs} =	-60℃, 90%RH, 240 hours		
High Temperature Operating Test	Open-cell		T_{gs} =70°C, 240 hours	(1),(2),(3),(4)	
Low Temperature Operating Test	Open-cell		T_a =-20°C, 240 hours		
High Temperature Storage Test	Open-cell		T _a =80°C, 240 hours	(4) (2) (4)	
Low Temperature Storage Test	Open-cell		T_a =-30°C, 240 hours	(1),(3),(4)	
ESD Test	Module	Contact	±8KV, 150pF(330Ohm)	(1) (2) (5)	
ESD Test	iviodule	Air ±15KV, 150pF(330Ohm)		(1),(2),(5)	

Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the open-cell after reliability test.

Note (2) The setting of electrical parameters should follow the typical value before reliability test.

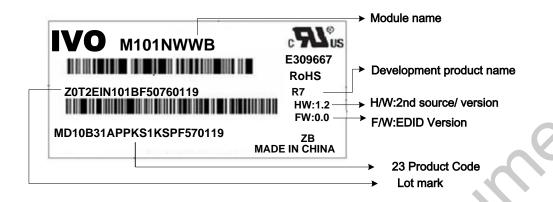
Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the open-cell from static electricity.

Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm10\%$ RH. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature.


Note (5) It could be regarded as pass, when the open-cell recovers from function fault caused by ESD after resetting.

Document Name	P101NWWB R7 Cust	Page 2	1 of 25		
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

7.0 Package Specification


Figure 18 Packing Method

Document Name	P101NWWB R7 Cust	Page 2	2 of 25		
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

8.0 Lot Mark

Note: This picture is only an example.

8.1 20 Lot Mark

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Code 1,2,4,5,6,7,8,9,10,11,16: IVO internal flow control code.

Code 3: Production Location.

Code 12: Production Year.

Code 13: Production Month.

Code 14,15: Production Day.

Code 17,18,19,20: Serial Number.

8.2 23 Product Barcode

Code 1,2: Manufacture District.

Code 3,4,5,6,7: IVO internal module name.

Code 8,9,10,13,16: IVO internal flow control code.

Code 11,12: Cell location Suzhou, China defined as "KS".

Code 14,15: Module location Kunshan, China defined as "KS"; Yangzhou, China defined as "YZ"; Shenzhen, China defined as "SE"; Zhuhai, China defined as "ZH"; Suzhou, China defined as "SZ".

Code 17,18,19: Year, Month, Day refer to Note(1), Note(2) and Note(3).

Note (1) Production Year

Year	2006	2007	2008	2009	2010	2011	2012	2013	 2035
Mark	6	7	8	9	Α	В	С	D	 Z

InfoVision Optoelectronics (Kunshan)Co., Ltd.

Document Name	P101NWWB R7 Cust	Page 2	3 of 25		
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	Мау.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

Note (3) Production Day: 1~V. Code 20~23: Serial Number.

Document Name	P101NWWB R7 Cust	Page 2	4 of 25		
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1) The LCD product should be operated under normal conditions.

Normal conditions are defined as below:

Temperature: 25°C Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

- (2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)
- (3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the open-cell. Besides, smear or spot will remain after condensate water evaporating.
- (4) If the absolute maximum rating value was exceeded, it may damage the open-cell.
- (5) Do not adjust the variable resistor located on the open-cell.
- (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.
- (7) Image sticking may occur when the panel displayed the same pattern for long time.
- (8) Do not connect or disconnect the open-cell in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"
- (9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

- (1) All the operators should be electrically grounded and with Ion-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.
- (2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.
- (3) Do not damage the PCBA. And it is recommended to use packing trays while carrying
- (4) The mounting structure should be taken into consideration so that uneven force (ex. Twisted stress) is not applied to the open-cell. The case on which an open-cell is mounted should have sufficient strength so that external force is not transmitted to the open-cell directly.
- (5) It is obvious that you should adopt radiation structure to satisfy the temperature specification.
- (6) So as to acquire higher luminance, the cable between the back light and the inverter of the power supply should be connected directly with a minimize length.

Document Name	P101NWWB R7 Cust	Page 2	5 of 25		
Document No.	A-P101NWWB-R7-468-02	Made/Revised Date	2019/11/29	Ver.	00

- (7) A transparent protective film needs to be attached to the surface of the panel.
- (8) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.
- (9) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.
- (10) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.
- (11) Desirable cleaners are IPA (Isopropyl Alcohol) ,Ethyl alcohol or hexane. Do not use Ketone type materials (ex. Acetone), Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (12) Do not disassemble or modify the open-cell. It may damage sensitive parts in the LCD open-cell, and cause scratches or dust remains. IVO does not warrant the open-cell, if you disassemble or modify the open-cell.

9.4 Handling Precaution

- (1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with lon-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.
- (2) The protection film is attached to the polarizer with a small amount of glue. When the open-cell with protection film attached is stored for a long time, a little glue may remain after peeling.
- (3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing the open-cell as spares for long time, the following precautions must be executed.

- (1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing the LCD open-cell, obey the local environmental regulations.