

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	1/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

Customer Approved Specification

To: 苏州与来视讯科技有限公司

Product Name: E102AWF2 R6

Document Issue Date: 2021/04/15

Customer				
<u>SIGNATURE</u>				
Please return 1 copy for your confirmation with				
your signature and comments.				

InfoVision Optoelectronics			
SIGNATURE			
<u> </u>			
REVIEWED BY CQM			
,			
DDEDADED DV. E4E			
PREPARED BY FAE			

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	2/42
Document No.	A-E102AWF2-R6-468-02	A-E102AWF2-R6-468-02 Issue date 2021/04/15		Revision	00

FQ-7-30-0-009-03D

Revision	Date	Page	Revised Content/Summary	Remark
00	2021/04/15		First issued.	
				~0
			20	

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	3/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

CONTENTS

1.0	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	6
3.0	OPTICAL CHARACTERISTICS	8
4.0	ELECTRICAL CHARACTERISTICS	12
5.0	MECHANICAL CHARACTERISTICS	36
6.0	RELIABILITY CONDITIONS	39
7.0	PACKAGE SPECIFICATION	40
8.0	LOT MARK	41
9.0	GENERAL PRECAUTION	42

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	4/42
Document No.	A-E102AWF2-R6-468-02	A-E102AWF2-R6-468-02		Revision	00

1.0 General Descriptions

1.1 Introduction

The E102AWF2 R6 is a Color Active Matrix Liquid Crystal Display. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 10.25 inch diagonally measured active display area with FHD resolution (1,920 horizontal by 720 vertical pixels array).

1.2 Features

- Supported FHD Resolution
- LVDS Interface
- Wide View Angle
- Compatible with RoHS Standard

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	10.25	inch
Active Area (H x V)	243.648 x 91.368	mm
Number of Pixels (H x V)	1,920 x 720	-
Pixel Pitch (H x V)	0.1269 x 0.1269	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
Contrast Ratio	(900) (Typ.)	-
Response Time	(20)(Typ.)	ms
Input Voltage	(3.3) (Typ.)	V
Weight	(95) (Max.)	g
Outline Dimension (H x V x D)	(252.2) (Typ.) x (103.2)(Typ.) x (1.426)(Max.)	mm
Electrical Interface (Logic)	LVDS	-
Support Color	16.7 M (8bit)	-
NTSC	(68) (Typ.)	%
Surface Treatment	HC	-
Transmittance	(3.6)(Typ.)	%

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	5/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

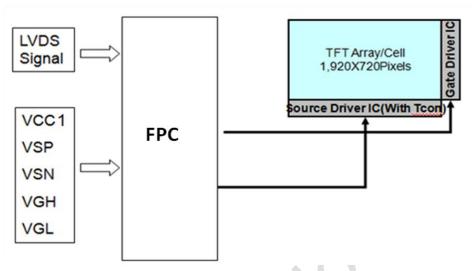


Figure 1 Block Diagram

1.5 Pixel Mapping

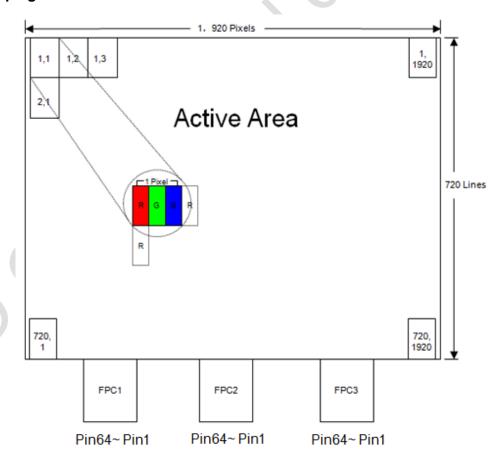


Figure 2 Pixel Mapping

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	6/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
	VCC1	(-0.3)	(4)	V	
	VSP	(-0.3)	(7.7)	V	34
Power supply voltage	VSN	(-7.7)	(-0.5)	V	GND=0
	VGH	(-0.3)	(VGL+42)	V	(1),(2),
	VGL	(-25)	(0.3)	V	(3),(4)
Programming voltage	VDD_OTP	(-0.3)	(8.75)	V	(0),(1)
Digital I/O input signals	V _{IO}	(-0.3)	(VCC1+0.3)	V	
Operating Temperature	Tgs	-20	70	$^{\circ}$	(1),(2),
Storage Temperature	Ta	-30	85	$^{\circ}$	(3),(4)

Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 57.8° C, and no condensation of water. Besides, protect the module from static electricity.

Document Title	E102AWF2 R6 Custome	Page No.	7/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

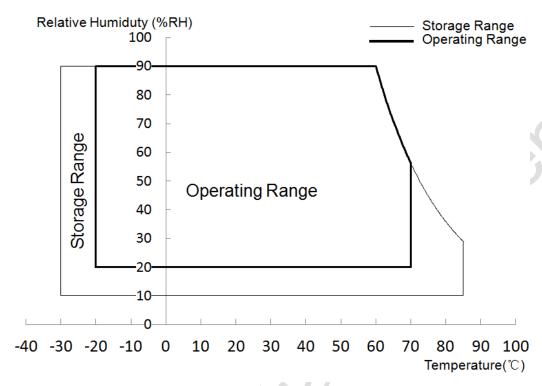


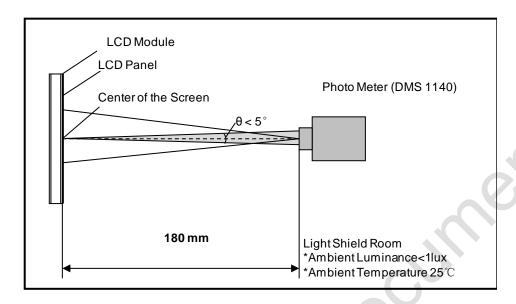
Figure 3 Absolute Ratings of Environment of the LCD Module

Document Title	E102AWF2 R6 Custome	Page No.	8/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

3.0 Optical Characteristics

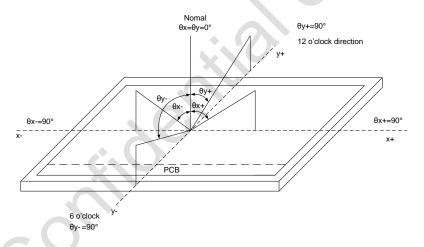
The optical characteristics are measured under stable conditions as following notes.

Table 2 Optical Characteristics


Item	Conditions		Min.	Тур.	Max.	Unit	Note	
Viouina	Horizontal	θ ×+	(80)	(85)	-		*	
Viewing Angle	HOHZOHIAI	θ _{x-}	(80)	(85)	-	degree	(1),(2),(3),(6),	
(CR≥10)	Vertical	θ _{y+}	(80)	(85)	-	uegree	(7)	
(CIX210)	vertical	θ _{y-}	(80)	(85)	-			
Contrast Ratio	Center		(700)	(900)	-		$\theta = \theta = 0$	
Response Time	Rising + Fal @25℃	ling	-	(20)	(30)	ms	(1),(4),(6),(7) $\theta x = \theta y = 0^{\circ}$	
Transmitta nce	-		(3.2)	(3.6)	<u>.</u>	%	(1),(5),(7) θx=θy=0° (Under C-light)	
	Red x			(0.657)		-		
	Red y			(0.326)		-		
Color	Green x		(0)	(0.289)		-	(4) (5) (7)	
Chromatici	Green y		Typ.	(0.608)	Тур.	-	(1),(5),(7)	
ty	Blue x		(-0.02)	(0.132)	(+0.02)	-	$\theta x = \theta y = 0^{\circ}$	
(CIE1931)	Blue y			(0.143)		-	(Under	
	White x			(0.325)		-	C-light)	
	White y	V		(0.376)		-		
NTSC	-		65	(68)	-	%		

Note (1) Measurement Setup:

The LCD module should be stabilized at given ambient temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.



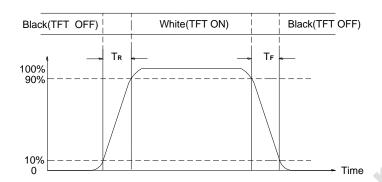
Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	9/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

Figure 4 Measurement Setup

Note (2) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle

Note (3) Definition of Contrast Ratio (CR)


The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = The luminance of White pattern/ The luminance of Black pattern

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	10/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

Note (4) Definition of Response Time (T_R, T_F)

Figure 6 Definition of Response Time

Note (5) C-Light Spectrum

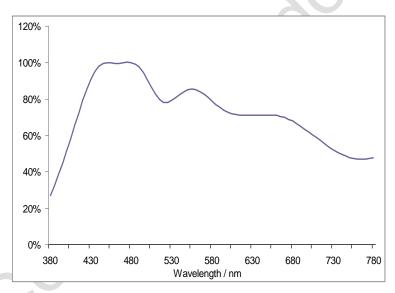


Figure 7 C-Light Spectrum

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	11/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

Note (6) Light source is the BL which is supplied by Customer.

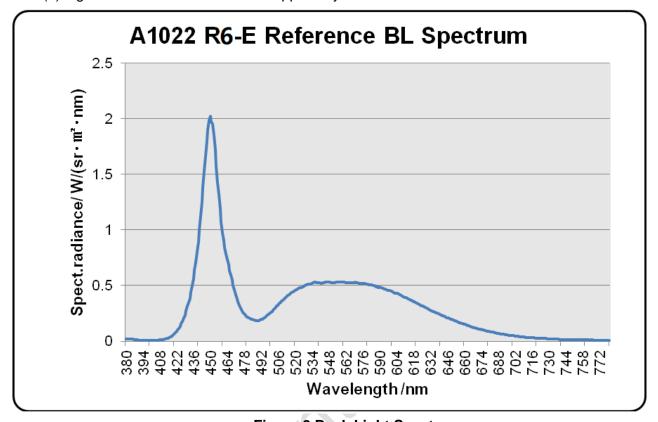


Figure 8 Back Light Spectrum

Note (7) All optical data are based on IVO given system & nominal parameter & testing machine in this document.

Document Title	E102AWF2 R6 Custome	Page No.	12/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

4.0 Electrical Characteristics

4.1 Interface Connector

Table 3 Signal Connector Type

Item	Description				
Mating Receptacle / Type (Reference)	AORORA F31L-1A7H1-11064-E120 or Compatible				

Table 4 Signal FPC1 Pin Assignment

Pin No.	Symbol	Function	Remarks
1	NC	No connection	-
2	NC	No connection	-
		Enable auto reload OTP every 60 frames (Short to FPC2's and	
		FPC3's ATREN when PCBA design. And when OTP	
3	ATREN	programming, ATREN pull L.)	-
		ATREN=H:Enable auto reload OTP(Default)	
		ATREN=L:Disable auto reload OTP	
4	NC	No connection	-
5	NC	No connection	-
6	NC	No connection	-
7	NC	No connection	-
8	NC	No connection	-
		Power input for LCD common electrode (Require a 2.2uF and	
9	VCOM	0.1uF capacitor to GND as close to FPC1's VCOM as possible,	-
		and short to FPC2's and FPC3's VCOM when PCBA design.)	
		Internal regulator output for negative level shifter (-3V)(Require	
10	VCL1	a 2.2uF capacitor to GND as close to FPC1's VCL1 as	-
		possible.)	
		Power input for source driver and power circuits (Require a	
11	VSN	4.7uF and 0.1uF capacitor and 10KΩ resistance to GND as	_
	VOIN	close to FPC1's VSN as possible and Short to FPC2's and	-
	3	FPC3's VSN when PCBA design.)	
12	GND	GND	-
		Power input for source driver and power circuits (Require a	
13	VSP	4.7uF and 0.1uF capacitor and 10KΩ resistance to GND as	_
13	۷٥۱	close to FPC1's VSP as possible and Short to FPC2's and	_
		FPC3's VSP when PCBA design.)	

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	13/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

		Inversion type selection.	
		H: Dot Inversion	
14	INV0	L: 1+2Dot Inversion	-
		Short to FPC2's and FPC3's INV0 when PCBA design. (IVO	
		suggestion: Please pull L on PCBA)	
		Serial Interface clock input (Please Pull H with 4.7KΩ	
15	I2C_SCL	resistance and short to FPC2's and FPC3's I2C_SCL when	_
		PCBA design.)	
		Serial Interface address and data (Please Pull H with 4.7KΩ	
16	I2C_SDA	resistance and short to FPC2's and FPC3's I2C_SDA when	-
		PCBA design.)	
		Global Reset pin. Active low(RESETB must meet the	
		sequence of Driver IC when power on/off ;Add external RC	
17	RESETB	circuit(R=10KΩ,C= 1uF) to pin RESETB to start whole chip	-
		reset when power up and short to FPC2's and FPC3's	
		RESETB when PCBA design.)	
		Standby mode setting pin. Active low. Timing controller, output	
		buffer, DAC and power circuit all off when STBYB is low.(Add	
18	STBYB	external RC circuit(R=10KΩ,C= 1uF) to pin STBYB to start	
10	SIDID	whole chip STBYB when power up .STBYB must meet the	-
		sequence of Driver IC when power on/off; And short to FPC2's	
		and FPC3's STBYB when PCBA design.)	
		Power input for main and I/O power (Require a 4.7uF and	
19	VCC1	0.1uF capacitor to GND as close to FPC1's VCC1 as possible	-
		and short to FPC2's and FPC3's VCC1 when PCBA design.)	
		Internal regulator output for logic power supply (3.3V) (Require	
20	VDDD1	a 2.2uF capacitor to GND as close to FPC1's VDDD as	-
		possible when PCBA design.)	
		Internal regulator output for interface power supply (3.3V)	
21	VDDDIF1	(Require a 2.2uF capacitor to GND as close to FPC1's	-
		VDDDIF as possible when PCBA design.)	
22	GND	GND	-
23	ELV3P	LVDS data lane 3 Positive	-
24	ELV3N	LVDS data lane 3 Negative	-
25	GND	GND	

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	14/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

ELV2P LVDS data lane 2 Positive - ELV2N LVDS data lane 2 Negative - BND GND - BLVCLKP LVDS Clock Lane Positive - BND GND - BLVCLKN LVDS Clock Lane Negative - BND GND - BLVTIP LVDS Data Lane 1 Positive - BND GND - BLVTIN LVDS Data Lane 1 Negative - BND GND - BLVOP LVDS Data Lane 0 Positive - BLVOP LVDS Data Lane 0 Positive - BND GND GND - BND GND -				<u> </u>
28 GND GND	26	ELV2P	LVDS data lane 2 Positive	-
ELVCLKP LVDS Clock Lane Positive - 30 ELVCLKN LVDS Clock Lane Negative - 31 GND GND - 32 ELV1P LVDS Data Lane 1 Positive - 33 ELV1N LVDS Data Lane 1 Negative - 34 GND GND - 35 ELV0P LVDS Data Lane 0 Positive - 36 ELV0N LVDS Data Lane 0 Positive - 37 GND GND - 38 OLV3P LVDS data lane 3 Positive - 39 OLV3N LVDS data lane 3 Positive - 40 GND GND - 41 OLV2P LVDS data lane 2 Positive - 42 OLV2N LVDS data lane 2 Negative - 43 GND GND - 44 OLV2LKP LVDS Clock Lane Positive - 45 OLVCLKN LVDS Clock Lane Negative - 46 GND GND GND - 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Positive - 49 GND GND - 40 GND GND - 41 OLV2P LVDS Data Lane 1 Positive - 42 OLV2N LVDS Clock Lane Positive - 43 GND GND - 44 OLVCLKP LVDS Clock Lane Negative - 45 OLVCLKN LVDS Data Lane 1 Positive - 46 GND GND - 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Positive - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Positive - 52 GND GND - 53 VGMPHO Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.)	27	ELV2N	LVDS data lane 2 Negative	-
SUPPRIOR	28	GND	GND	-
31 GND GND GND - 32 ELV1P LVDS Data Lane 1 Positive - 33 ELV1N LVDS Data Lane 1 Negative - 34 GND GND - 35 ELV0P LVDS Data Lane 0 Positive - 36 ELV0N LVDS Data Lane 0 Negative - 37 GND GND - 38 OLV3P LVDS data lane 3 Positive - 39 OLV3N LVDS data lane 3 Negative - 40 GND GND - 41 OLV2P LVDS data lane 2 Positive - 42 OLV2N LVDS data lane 2 Positive - 43 GND GND - 44 OLVCLKP LVDS Clock Lane Positive - 45 OLVCLKN LVDS Clock Lane Negative - 46 GND GND - 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Positive - 49 GND GND - 50 OLVOP LVDS Data Lane 1 Negative - 51 OLVON LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.)	29	ELVCLKP	LVDS Clock Lane Positive	-
Section	30	ELVCLKN	LVDS Clock Lane Negative	
Section	31	GND	GND	-
34 GND GND	32	ELV1P	LVDS Data Lane 1 Positive	-
35 ELVOP LVDS Data Lane 0 Positive 36 ELVON LVDS Data Lane 0 Negative 37 GND GND 38 OLV3P LVDS data lane 3 Positive 39 OLV3N LVDS data lane 3 Negative 40 GND GND 41 OLV2P LVDS data lane 2 Positive 42 OLV2N LVDS data lane 2 Negative 43 GND GND 44 OLVCLKP LVDS Clock Lane Positive 45 OLVCLKN LVDS Clock Lane Negative 46 GND GND 47 OLV1P LVDS Data Lane 1 Positive 48 OLV1N LVDS Data Lane 1 Positive 49 GND GND 50 OLVOP LVDS Data Lane 0 Positive 51 OLVON LVDS Data Lane 0 Positive 52 GND GND 53 VGMPHO CRequire a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO (Require a 2.2uF capacitor to GND as close to FPC1's	33	ELV1N	LVDS Data Lane 1 Negative	-
36 ELV0N LVDS Data Lane 0 Negative - 37 GND GND - 38 OLV3P LVDS data lane 3 Positive - 39 OLV3N LVDS data lane 3 Negative - 40 GND GND - 41 OLV2P LVDS data lane 2 Positive - 42 OLV2N LVDS data lane 2 Negative - 43 GND GND - 44 OLVCLKP LVDS Clock Lane Positive - 45 OLVCLKN LVDS Clock Lane Negative - 46 GND GND - 47 OLV1P LVDS Data Lane 1 Positive - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND - - 53 VGMPHO (Require a 2.2uF capacitor to GND as close to FPC1's - 53 VGMPHO	34	GND	GND	-
37 GND GND GND - 38 OLV3P LVDS data lane 3 Positive - 39 OLV3N LVDS data lane 3 Negative - 40 GND GND - 41 OLV2P LVDS data lane 2 Positive - 42 OLV2N LVDS data lane 2 Negative - 43 GND GND - 44 OLVCLKP LVDS Clock Lane Positive - 45 OLVCLKN LVDS Clock Lane Negative - 46 GND GND - 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Negative - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND GND - 53 VGMPHO Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO (Require a 2.2uF capacitor to GND as close to FPC1's - 54 VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -	35	ELV0P	LVDS Data Lane 0 Positive	
38 OLV3P LVDS data lane 3 Positive	36	ELV0N	LVDS Data Lane 0 Negative	-
39 OLV3N LVDS data lane 3 Negative	37	GND	GND	-
40 GND GND GND	38	OLV3P	LVDS data lane 3 Positive	-
41 OLV2P LVDS data lane 2 Positive	39	OLV3N	LVDS data lane 3 Negative	-
42 OLV2N LVDS data lane 2 Negative	40	GND	GND	-
43 GND GND	41	OLV2P	LVDS data lane 2 Positive	-
44 OLVCLKP LVDS Clock Lane Positive - 45 OLVCLKN LVDS Clock Lane Negative - 46 GND GND 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Negative - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's - 48 OLV1P LVDS Data Lane 0 Positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's - 49 GND - 40 GND - 51 OLV0N LVDS Data Lane 0 Positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's - 52 GND Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's -	42	OLV2N	LVDS data lane 2 Negative	-
45 OLVCLKN LVDS Clock Lane Negative - 46 GND GND 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Negative - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHI when PCBA design.)	43	GND	GND	-
46 GND GND 47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Negative - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's -	44	OLVCLKP	LVDS Clock Lane Positive	-
47 OLV1P LVDS Data Lane 1 Positive - 48 OLV1N LVDS Data Lane 1 Negative - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's - VGMPHO (Require a 2.2uF capacitor to GND as close to FPC1's -	45	OLVCLKN	LVDS Clock Lane Negative	-
48 OLV1N LVDS Data Lane 1 Negative - 49 GND GND - 50 OLV0P LVDS Data Lane 0 Positive - 51 OLV0N LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHI when PCBA design.)	46	GND	GND	
49 GND GND - 50 OLVOP LVDS Data Lane 0 Positive - 51 OLVON LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's -	47	OLV1P	LVDS Data Lane 1 Positive	-
50 OLVOP LVDS Data Lane 0 Positive - 51 OLVON LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's -	48	OLV1N	LVDS Data Lane 1 Negative	-
51 OLVON LVDS Data Lane 0 Negative - 52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's -	49	GND	GND	-
52 GND GND - Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's -	50	OLV0P	LVDS Data Lane 0 Positive	-
Internal regulator output for positive gamma reference voltage (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -	51	OLV0N	LVDS Data Lane 0 Negative	-
VGMPHO (Require a 2.2uF capacitor to GND as close to FPC1's VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -	52	GND	GND	-
VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -			Internal regulator output for positive gamma reference voltage	
VGMPHO as possible and short to FPC2's and FPC3's VGMPHI when PCBA design.) Internal regulator output for positive gamma reference voltage VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -	53	VGMPHO	(Require a 2.2uF capacitor to GND as close to FPC1's	_
Internal regulator output for positive gamma reference voltage VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -	33	V GIVII 110	VGMPHO as possible and short to FPC2's and FPC3's	
54 VGMPMO (Require a 2.2uF capacitor to GND as close to FPC1's -			VGMPHI when PCBA design.)	
· · ·			Internal regulator output for positive gamma reference voltage	
	54	VGMPMO	· ·	-
VGMPMO as possible and short to FPC2's and FPC3's			VGMPMO as possible and short to FPC2's and FPC3's	

Document Title	E102AWF2 R6 Customer Approved Specification		Page No.	15/42	
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

		VGMPMI when PCBA design.)	
		Internal regulator output for positive gamma reference voltage	
		(Require a 2.2uF capacitor to GND as close to FPC1's	
55	VGMPLO	VGMPLO as possible and short to FPC2's and FPC3's	-
		VGMPLI when PCBA design.)	
		Internal regulator output for negative gamma reference voltage	
50	VONANILIO	(Require a 2.2uF capacitor to GND as close to FPC1's	
56	VGMNHO	VGMNHO as possible and short to FPC2's and FPC3's	-
		VGMNHI when PCBA design.)	
		Internal regulator output for negative gamma reference voltage	
	\/CNANINAO	(Require a 2.2uF capacitor to GND as close to FPC1's	
57	VGMNMO	VGMNMO as possible and short to FPC2's and FPC3's	-
		VGMNMI when PCBA design.)	
		Internal regulator output for negative gamma reference voltage	
50	VGMNLO	(Require a 2.2uF capacitor to GND as close to FPC1's	
58		VGMNLO as possible and short to FPC2's and FPC3's	-
		VGMNLI when PCBA design.)	
50		Fail detection signal output (Please short to FPC2's and	
59	FAIL_DET1	FPC3's FAIL_DET when PCBA design.)	-
		Function detection by Hardware/Software selection	
		FCS=H: Hardware pin	
60	FCS	FCS=L: Software register	-
		Short to FPC2's and FPC3's FCS when PCBA design. (IVO	
		suggestion: Please pull H on PCBA)	
		Horizontal shift direction	
64	DI	RL=H: Forward(SOUT1→ SOUT2→→SOUT1920)	
61	RL	RL=L: Reverse(SOUT1920→SOUT1919→→S1)	-
		Short to FPC2's and FPC3's RL when PCBA design	
		Vertical shift direction(gate output) selection	
CO	TD	TB=H: Forward, Top → Bottom	
62	ТВ	TB=L: Reverse, Bottom → Top	-
		Short to FPC2's and FPC3's TB when PCBA design.	
		Enable built-in self test (BIST) function	
63	BISTEN	BISTEN=H: BIST mode	-
		BISTEN=L: Normal mode	

Document Title	E102AWF2 R6 Customer Approved Specification		Page No.	16/42	
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

		(Not use, please leave it to GND)	
		Short to FPC2's and FPC3' BISTEN when PCBA design.	
		Power input for OTP programming (8.5V). Leave this pin open	
		or connect it to VCC1 when not programming OTP (Require a	
64	VDD_OTP	2.2uF capacitor to GND as close to FPC1's VDD_OTP as	-
		possible and Short to FPC2's and FPC3's VDD_OTP when	
		PCBA design.)	

Table 5 Signal FPC2 Pin Assignment

Pin No.	Symbol	Function	Remarks
1	NC	No connection	_
2	NC	No connection	_
3	ATREN	Enable auto reload OTP every 60 frames ATREN=H:Enable auto reload OTP(Default) ATREN=L:Disable auto reload OTP	-
4	NC	No connection	_
5	NC	No connection	_
6	NC	No connection	_
7	NC	No connection	_
8	NC	No connection	_
9	VCOM	Power input for LCD common electrode (Require a 2.2uF and 0.1uF capacitor to GND as close to FPC2's VCOM as possible.)	-
10	VCL2	Internal regulator output for negative level shifter (-3V)(Require a 2.2uF capacitor to GND as close to FPC2's VCL2 as possible.)	-
11	VSN	Power input for source driver and power circuits (Require a 4.7uF and 0.1uF capacitor to GND as close to FPC2's VSN as possible.)	-
12	GND	GND	
13	VSP	Power input for source driver and power circuits (Require a 4.7uF and 0.1uF capacitor to GND as close to FPC2's VSP as possible.)	-

Document Title	E102AWF2 R6 Customer Approved Specification		Page No.	17/42	
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

		Inversion type selection.	
14	INV0	H: Dot Inversion	-
		L: 1+2Dot Inversion	
15	I2C_SCL	Serial Interface clock input	-
16	I2C_SDA	Serial Interface address and data	-
17	RESETB	Global Reset pin. Active low	-
10	CTDVD	Standby mode setting pin. Active low. Timing controller, output buffer,	
18	STBYB	DAC and power circuit all off when STBYB is low.	
19	VCC1	Power input for main and I/O power (Require a 4.7uF and 0.1uF	-
19	VCC1	capacitance to GND as close to FPC2's VCC1 as possible.)	
20	VDDD2	Internal regulator output for logic power supply (3.3V) (Require a	-
20	VDDDZ	2.2uF capacitor to GND when PCBA design.)	
21	VDDDIF2	Internal regulator output for interface power supply (3.3V) (Require	-
21	V D D D II Z	a 2.2uF capacitor to GND when PCBA design.)	
22	GND	GND	-
23	ELV3P	LVDS data lane 3 Positive	-
24	ELV3N	LVDS data lane 3 Negative	-
25	GND	GND	
26	ELV2P	LVDS data lane 2 Positive	-
27	ELV2N	LVDS data lane 2 Negative	-
28	GND	GND	-
29	ELVCLKP	LVDS Clock Lane Positive	-
30	ELVCLKN	LVDS Clock Lane Negative	
31	GND	GND	-
32	ELV1P	LVDS Data Lane 1 Positive	-
33	ELV1N	LVDS Data Lane 1 Negative	-
34	GND	GND	-
35	ELV0P	LVDS Data Lane 0 Positive	
36	ELV0N	LVDS Data Lane 0 Negative	-

Document Title	E102AWF2 R6 Customer Approved Specification		Page No.	18/42	
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

37	GND	GND	-
38	OLV3P	LVDS data lane 3 Positive	-
39	OLV3N	LVDS data lane 3 Negative	-
40	GND	GND	_
41	OLV2P	LVDS data lane 2 Positive	_
42	OLV2N	LVDS data lane 2 Negative	-
43	GND	GND	-
44	OLVCLKP	LVDS Clock Lane Positive	-
45	OLVCLKN	LVDS Clock Lane Negative	-
46	GND	GND	
47	OLV1P	LVDS Data Lane 1 Positive	-
48	OLV1N	LVDS Data Lane 1 Negative	-
49	GND	GND	-
50	OLV0P	LVDS Data Lane 0 Positive	-
51	OLV0N	LVDS Data Lane 0 Negative	-
52	GND	GND	-
53	VGMPHI	Positive gamma reference voltage (From FPC1's VGMPHO)	-
54	VGMPMI	Positive gamma reference voltage (From FPC1's VGMPMO)	-
55	VGMPLI	Positive gamma reference voltage (From FPC1's VGMPLO)	-
56	VGMNHI	Negative gamma reference voltage (From FPC1's VGMNHO)	-
57	VGMNMI	Negative gamma reference voltage (From FPC1's VGMNMO)	-
58	VGMNLI	Negative gamma reference voltage (From FPC1's VGMNLO)	-
59	FAIL_DET2	Fail detection signal output(Please reserve a test point when PCBA design.)	-
60	FCS	Function detection by Hardware/Software selection FCS=H: Hardware pin FCS=L: Software register	-

Document Title	E102AWF2 R6 Customer Approved Specification		Page No.	19/42	
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

		Horizontal shift direction	
61	RL	RL=H: Forward(SOUT1→ SOUT2→→SOUT1920)	-
		RL=L: Reverse(SOUT1920→SOUT1919→→S1)	
		Vertical shift direction(gate output) selection	
62	ТВ	TB=H: Forward, Top → Bottom	-
		TB=L: Reverse, Bottom → Top	
		Enable built-in self test (BIST) function	
63	DICTEN	BISTEN=H: BIST mode	
03	BISTEN	BISTEN=L: Normal mode	
		(Not use, please leave it to GND)	
		Power input for OTP programming (8.6V). Leave this pin open or	
64	VDD_OTP	connect it to VCC1 when not programming OTP (Require a 2.2uF	-
		capacitor to GND as close to FPC2's VDD_OTP as possible.)	

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	20/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

Table 6 Signal FPC3 Pin Assignment

Remarks
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	21/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

Т		T	
		DAC and power circuit all off when STBYB is low.	
19	VCC1	Power input for main and I/O power (Require a 4.7uF and 0.1uF	_
		capacitance to GND as close to FPC3's VCC1 as possible)	
20	VDDD3	Internal regulator output for logic power supply (3.3V) (Require a	_
20		2.2uF capacitor to GND when PCBA design.)	
21	VDDDIF3	Internal regulator output for interface power supply (3.3V) (Require	
		a 2.2uF capacitor to GND when PCBA design.)	
22	GND	GND	-
23	ELV3P	LVDS data lane 3 Positive	-
24	ELV3N	LVDS data lane 3 Negative	-
25	GND	GND	-
26	ELV2P	LVDS data lane 2 Positive	-
27	ELV2N	LVDS data lane 2 Negative	-
28	GND	GND	-
29	ELVCLKP	LVDS Clock Lane Positive	-
30	ELVCLKN	LVDS Clock Lane Negative	-
31	GND	GND	-
32	ELV1P	LVDS Data Lane 1 Positive	-
33	ELV1N	LVDS Data Lane 1 Negative	-
34	GND	GND	-
35	ELV0P	LVDS Data Lane 0 Positive	-
36	ELV0N	LVDS Data Lane 0 Negative	-
37	GND	GND	-
38	OLV3P	LVDS data lane 3 Positive	-
39	OLV3N	LVDS data lane 3 Negative	-
40	GND	GND	-
41	OLV2P	LVDS data lane 2 Positive	-
42	OLV2N	LVDS data lane 2 Negative	-
43	GND	GND	-
44	OLVCLKP	LVDS Clock Lane Positive	-
45	OLVCLKN	LVDS Clock Lane Negative	-
46	GND	GND	-
47	OLV1P	LVDS Data Lane 1 Positive	-
48	OLV1N	LVDS Data Lane 1 Negative	-
		•	•

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	22/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

49	GND	GND	-
50	OLV0P	LVDS Data Lane 0 Positive	-
51	OLV0N	LVDS Data Lane 0 Negative	-
52	GND	GND	-
53	VGMPHI	Positive gamma reference voltage (From FPC1's VGMPHO)	-
54	VGMPMI	Positive gamma reference voltage (From FPC1's VGMPMO)	-
55	VGMPLI	Positive gamma reference voltage (From FPC1's VGMPLO)	-
56	VGMNHI	Negative gamma reference voltage (From FPC1's VGMNHO)	-)
57	VGMNMI	Negative gamma reference voltage (From FPC1's VGMNMO)	-
58	VGMNLI	Negative gamma reference voltage (From FPC1's VGMNLO)	-
59	EAU DETA	Fail detection signal output (Please reserve a test point when PCBA	
59	FAIL_DET3	design.)	-
		Function detection by Hardware/Software selection	
60	FCS	FCS=H: Hardware pin	-
		FCS=L: Software register	
		Horizontal shift direction	
61	RL	RL=H: Forward(SOUT1→ SOUT2→→SOUT1920)	Note1
		RL=L: Reverse(SOUT1920→SOUT1919→→S1)	
		Vertical shift direction(gate output) selection	
62	ТВ	TB=H: Forward, Top → Bottom	Note1
		TB=L: Reverse, Bottom → Top	
		Enable built-in self test (BIST) function	
63	BISTEN	BISTEN=H: BIST mode	
03	BISTEN	BISTEN=L: Normal mode	-
		(Not use, please leave it to GND)	
		Power input for OTP programming (8.5V). Leave this pin open or	
64	VDD_OTP	connect it to VCC1 when not programming OTP (Require a 2.2uF	-
		capacitor to GND as close to FPC3's VDD_OTP as possible.)	

Note: TB and RL control function

RL	ТВ	Scan direction	
Н	Н	Data scan from left to right;	Gate scan from up to down
L	Η	Data scan from right to left;	Gate scan from up to down
Н	L	Data scan from left to right;	Gate scan from down to up
L	Ĺ	Data scan from right to left;	Gate scan from down to up

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	23/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

- 4.1.1 FPC Cascade Design for Customer
- 4.1.1.1The Reference Design of External Power on PCBA is as Follows:
 - (1) The VGH/VGL voltages are provided by external power (Figure 9);
 - (2) The capacitors of VGH/VGL need to be as close to FPC as possible(Figure 9);

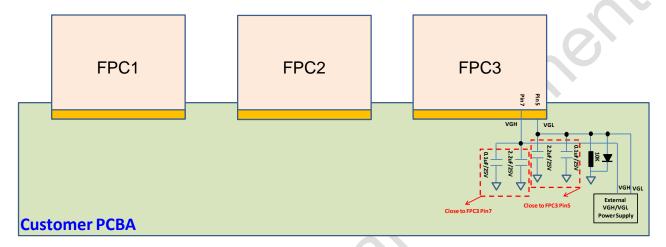


Figure 9: Cascade design with external Power Supply (VGH/VGL)

- (3) The VSP/VSN voltages are provided by external power (Figure 10);
- (4) The capacitors of VSP/VSN need to be as close to FPC1 as possible (Figure 10);

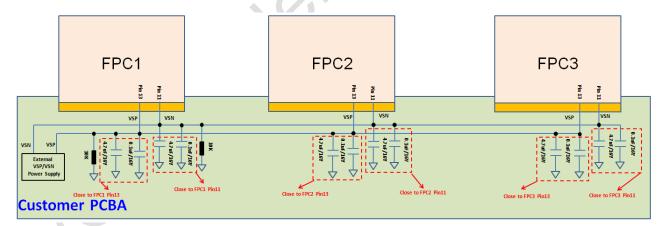


Figure 10: Cascade design with external Power Supply(VSP/VSN)

- (5) The VCC1 voltages are provided by external power (Figure 11) ;
- (6) The capacitors of VCC1 need to be as close to FPC as possible (Figure 11);

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	24/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

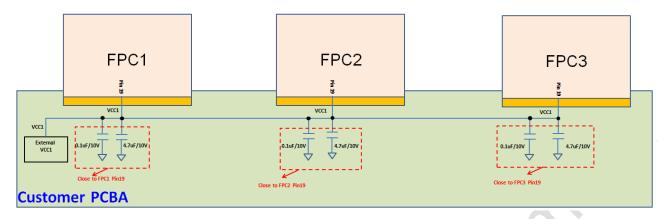


Figure 11: Cascade design with external Power Supply (VCC1)

- 4.1.1.2. The Reference Design of Regulator Outputs Power on PCBA is as Follows:
 - (1) The VDDD/VDDDIF/VCL voltages are provided by internal power (Figure 12);
- (2) The capacitors of VDDD/VDDDIF/VCL need to be as close to FPC as possible (Figure 12);
 - (3) The VCL of FPC1 don't need to be short to the VCL of FPC2 and FPC3 (Figure 12);

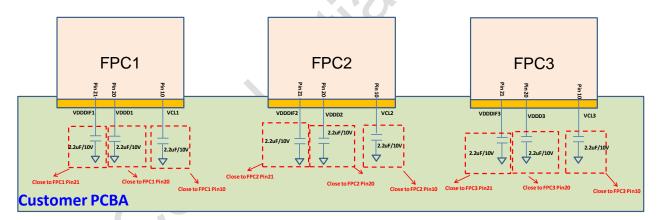


Figure 12: Cascade design for regulator outputs

- (4) The VCOM voltages are provided by external power (Figure 13);
- (5) The capacitors of VCOM need to be as close to FPC as possible (Figure 13);

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	25/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

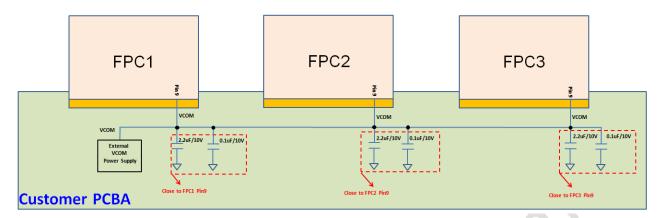


Figure 13: Cascade design with regulator outputs (VCOM)

- 4.1.1.3. The Reference Design of Gamma Reference Voltages on PCBA is as Follows:
 - (1) The gamma reference voltages are provided by internal power (Figure 14);
- (2) The capacitors of gamma reference voltages need to be as close to FPC1 as possible (Figure 14);

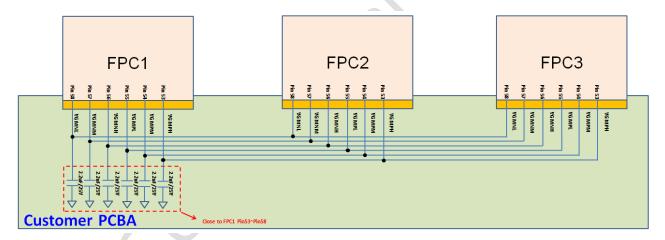


Figure 14: Cascade design for gamma reference voltages

- 4.1.1.4. The Reference Design of Signal on PCBA is as Follows:
 - (1) L type is recommended for LVDS trace (Figure 15);
 - (2) The terminal resistors is placed to the LVDS trace terminal (Figure 15);
 - (3) The resistance value of the terminal resistors is recommended as 100ohm (Figure 15);

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	26/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

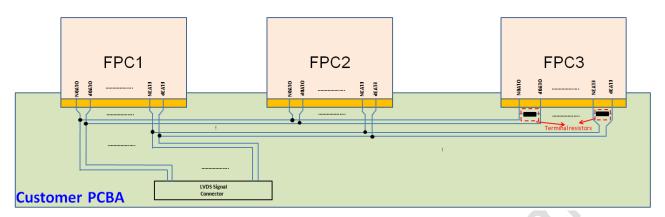


Figure 15: Cascade design with LVDS Signal

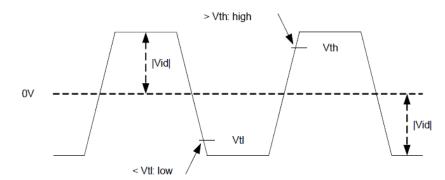
Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	27/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics For LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

Table 7 LVDS Receiver Electrical Characteristics


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	-	-	(+0.2)	V	V _{CM} =1.2V
Differential Input Low Threshold	VtI	(-0.2)	-	-	V	
Magnitude Differential Input	$ V_{ID} $	(0.2)	-	(0.6)	٧	(/) -
Common Mode Voltage	V_{CM}	(1)	(1.2)	(1.7- V _{ID} /2)	V	-
LVDS input voltage	VINLV	(0.7)	ı	(1.7)	V	-
Differential input leakage	Ilvleak	(-10)	ı	(+10)	uA	-

Note (1) Input signals shall be low or Hi- resistance state when VDD is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Single-ended: LVCLKP(R), |Vid| LVCLKN(R), LVD [3:0]P(R), LVD[3:0]N(R)

Differential: LVCLKP(R)-LVCLKN(R), LVD[3:0]P(R)-LVD [3:0]N(R)

Figure 9 Voltage Definitions

Document Title	E102AWF2 R6 Customer Approved Specification Page				28/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

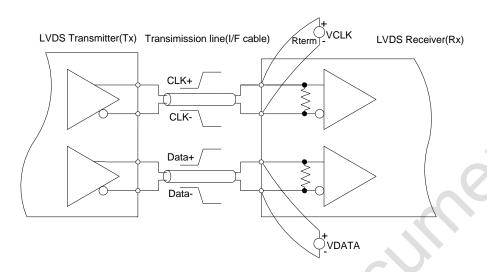
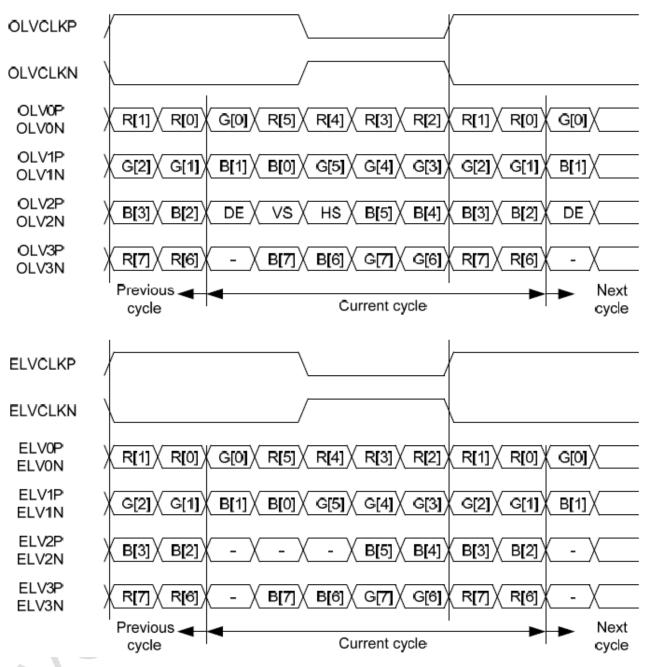
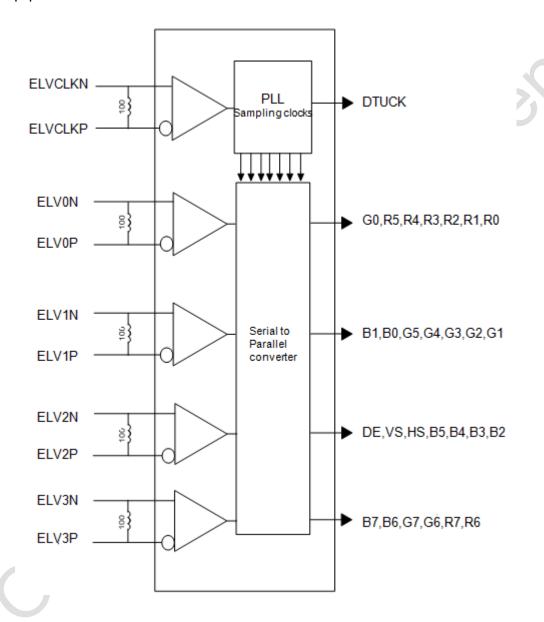


Figure 10 Measurement System

Document Title	E102AWF2 R6 Custome	Page No.	29/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00




Figure 11 Data Mapping

Document Title	E102AWF2 R6 Custome	Page No.	30/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

4.2.2 LVDS Receiver Internal Circuit

Figure 12 shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

Document Title	E102AWF2 R6 Customer Approved Specification Page No.				31/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

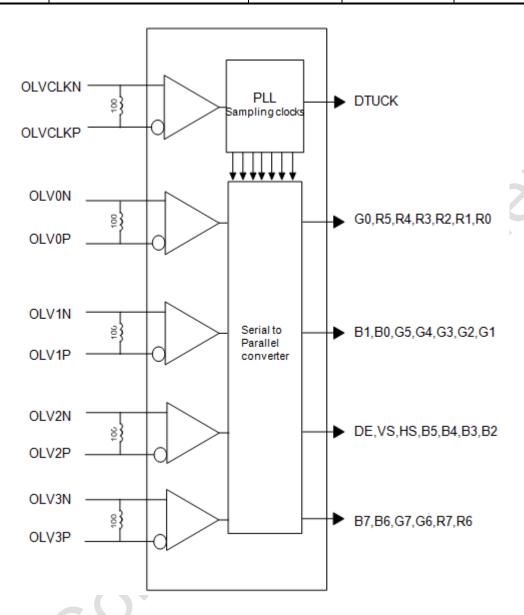


Figure 12 LVDS Receiver Internal Circuit

Document Title	E102AWF2 R6 Custome	Page No.	32/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

4.3 Interface Timings

Table 8 Interface Timings

Parameter	Symbol	Min.	Тур.	Max.	Unit
LVDS Clock Frequency	Fclk	(43.4)	(44.1)	(58.0)	MHz
H Total Time	HT	(990)	(1,002)	(1200)	Clocks
H Active Time	НА		(960)		Clocks
V Total Time	VT	(730)	(733)	(806)	Lines
V Active Time	VA		(720)		Lines
Frame Rate	FV	55	60	65	Hz

Note1: HT * VT *Frame Frequency≤58.0MHz

Note2: Dual link LVDS

Note3: All reliabilities are specified for timing specification based on refresh rate of 60Hz.

Document Title	E102AWF2 R6 Custome	Page No.	33/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

4.4 Input Power Specifications

Input power specifications are as follows.

Table 9 Input Power Specifications

Parame	eter		Symbol	Min.	Тур.	Max.	Unit	Note
System Power Supp	oly							×
LCD Drive Voltage	(Logic)		VCC1	(3.0)	(3.3)	(3.6)	V	(1),(2)
VCC Current	White F	Pattern	I _{VCC1}	ı	-	(70)	mA	
VCC Power Consumption	White F	Pattern	P _{VCC1}	-	-	(231)	mW	(1),(4)
Gate IC input H	ligh Volta	ge	VGH	(14)	(15)	(16)	V	
Gate IC Analog input current	White F	Pattern	lvgн	ı	-	(0.8)	mA	(1)(2)
Gate IC Analog Pow	ver Consu	ımption	Рvgн	1	-	(12)	mW	
Gate IC input L	ow Volta	ge	VGL	(-12)	(-11)	(-10)	V	
Gate IC Analog input current	White F	Pattern	lvgl	. 7	-	(0.8)	mA	(1)(2)
Gate IC Analog Pow	Gate IC Analog Power Consumption				-	(8.8)	mW	
Source IC Analog	Source IC Analog input voltage		VSP	(5.3)	(5.4)	(5.5)	V	
Source IC Analog current	input	White	I _{VSP}	-	-	(40)	mA	(1)(3)
Source IC Ana Consum	•	er	P _{VSP}	-	-	(216)	mW	(1)(3)
Source IC Analog	j input vol	tage	VSN	(-5.5)	(-5.4)	(-5.3)	V	(1)
Source IC Analog current	input	White	$I_{ m VSN}$	-	-	(40)	mA	(1)
	Source IC Analog Power Consumption		P _{VSN}	-	-	(216)	mW	(1)(3)
Panel Commo	on Voltage	Э	VCOM	(-1.75)	(-0.75)	(0.25)	V	(3)
Differential In	npedance	<u> </u>	Zm	(90)	(100)	(110)	Ω	(5)
Logic Input Sign Voltag	•	evel	VIH	(2.6)	-	(3.6)	V	(6)

Document Title	E102AWF2 R6	E102AWF2 R6 Customer Approved Specification Page No.					34/42	
Document No.	A-E102AWF2-R6-	468-02	Issue dat	e 20	21/04/15	5 Revision		00
	Signal Low Level	VIL	(0)	-	(0.5)	V		(6)

Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH.

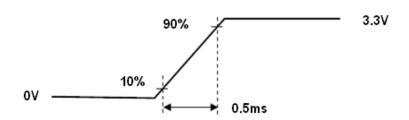
Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

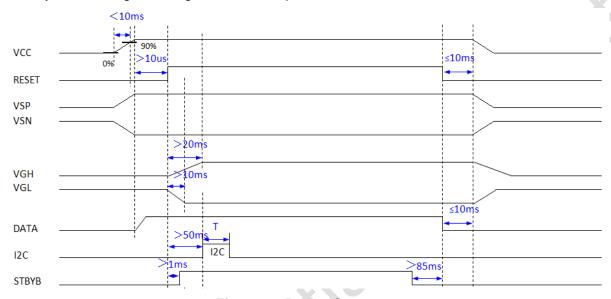
Note (3) The specified V_{cc} current and power consumption are measured under the V_{cc1} = 3.3 V, FV= 60 Hz condition and White pattern.

Note (4) The figures below is the measuring condition of V_{cc1} . Rush current can be measured when T_{RUSH} is 0.5 ms.

Note (5)This impedance value is needed for proper display and measured from LVDS Tx to the mating connector.

Note (6)Logic input signal include BISTEN、TB、RL、RESETB、STBYB



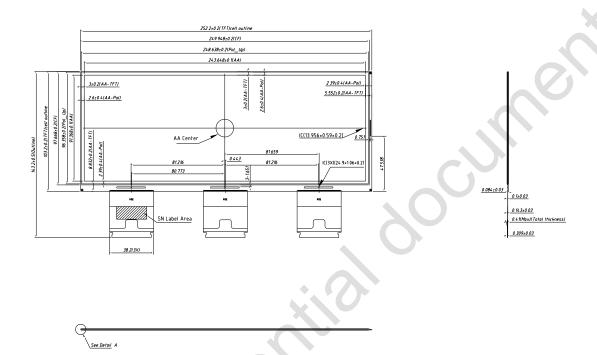

Figure 13 V_{cc1} Rising Time

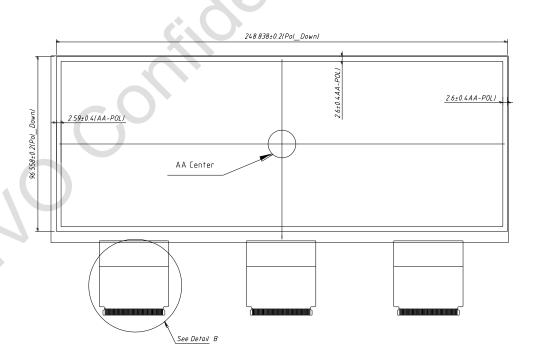
Document Title	E102AWF2 R6 Custome	Page No.	35/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

4.5 Power ON/OFF Sequence

- 1.Interface signals are also shown in the chart. Signals from any system shall be Hiresistance state or low level when VCC1 voltage is off.
- 2. When system first start up, should keep the VCC1 high time longer than 200ms, otherwise may cause image sticking when Vcc drop off.

Figure 14 Power Sequence

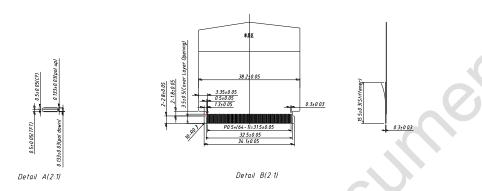

Note: T is On behalf of the time of code.



Document Title	E102AWF2 R6 Customer Approved Specification Page No.				36/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

5.0 **Mechanical Characteristics**

5.1 Outline Drawing



Document Title	E102AWF2 R6 Custome	Page No.	37/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

FPC 3 FPC 2 FPC 1

Unit: mm

Figure 15 Reference Outline Drawing

Document Title	E102AWF2 R6 Custome	Page No.	38/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

5.2 Dimension Specifications

Table 10 Module Dimension Specifications

Item	Min.	Тур.	Max.	Unit
Width	(252.00)	(252.20)	(252.40)	mm
Height	(103.00)	(103.20)	(103.40)	mm
Thickness	-	-	(1.426)	mm
Weight	-	-	(95)	g

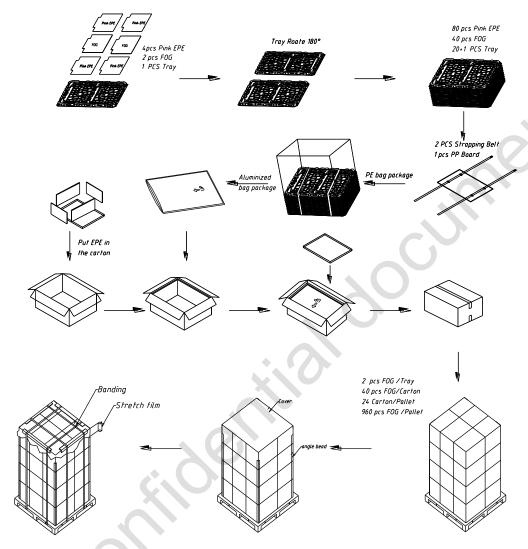
Note: Outline dimension measure instrument: Vernier Caliper.

Document Title	E102AWF2 R6 Custome	E102AWF2 R6 Customer Approved Specification					
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00		

6.0 Reliability Conditions

Table 11 Reliability Condition

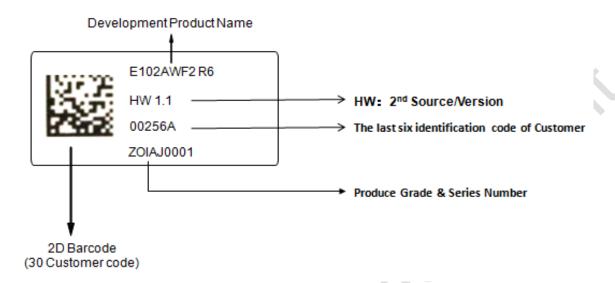
	Item	Package		Test Conditions	Note
	perature/High Humidity Operating Test	FOG	T _{gs} =6	0℃, 90%RH, 240 hours	
High Temperature/High Humidity Storage Test		FOG	T _a =60	0℃, 90%RH, 240 hours	(1),(2),(3),(4)
High Temperature Operating Test		FOG	Т		
Low Temp	erature Operating Test	FOG	Т	_a = -20℃, 240 hours	
High Tem	perature Storage Test	FOG	Т		
Low Temp	perature Storage Test	FOG	Т	_a = -30℃, 240 hours	(1),(3),(4)
Thermal	Thermal Shock Non-operating Test		-20°(0.5	hr)~70°(0.5hr)C/200cycles	
CCD Toot	Onevation	FOG	Contact	±4KV, 150pF(330Ohm)	(4) (2) (6)
ESD Test	Operating	FOG	Air	±4KV, 150pF(330Ohm)	(1),(2),(6)


Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

- Note (2) The setting of electrical parameters should follow the typical value before reliability test.
- Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.
- Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature.
- Note (5) The module should be fixed firmly in order to avoid twisting and bending.
- Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.

Document Title	E102AWF2 R6 Custome	E102AWF2 R6 Customer Approved Specification					
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00		

Package Specification


Figure 17 Packing Method

IVO

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	E102AWF2 R6 Custome	E102AWF2 R6 Customer Approved Specification					
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00		

8.0 Lot Mark

Note: This picture is only an example.

8.1 30 Customer Code

_	2	4	_	6	7			1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3
_	3	4	5	О	/	٥	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0

Code 1~6: The last six identification code of Customer.

Code 7: Space mark.

Code 8~22: Module number location information.

Code 23: The Production Factory.

Code 24~26: Production Year ~ Month ~ Day.

Y	⁄ear	2006	2007	2008	2009	2010	2011	2012	2013	2035
	Mark	6	7	8	9	A	B	C	D	 7

Month	Jan.	Feb.	Mar.	Apr.	Мау.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

Day	1.	2.	3	4.	5	6	7	8	9	10	 31
Mark	1	2	3	4	5	6	7	8	9	Α	 V

Coe 27~30: Series number.

Document Title	E102AWF2 R6 Custome	Page No.	42/42		
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1) The LCD product should be operated under normal conditions.

Normal conditions are defined as below:

Temperature: 25°C Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

- (2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)
- (3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.
- (4) If the absolute maximum rating value was exceeded, it may damage the module.
- (5) Do not adjust the variable resistor located on the module.
- (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.
- (7) Image sticking may occur when the module displayed the same pattern for long time.
- (8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"
- (9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

- (1) All the operators should be electrically grounded and with Ion-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.
- (2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.
- (3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.
- (4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.
- (5) It should be attached to the system tightly by using all holes for mounting, when the module is assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back.
- (6) A transparent protective film needs to be attached to the surface of the module.

Document Title	E102AWF2 R6 Customer Approved Specification			Page No.	43/42
Document No.	A-E102AWF2-R6-468-02	Issue date	2021/04/15	Revision	00

- (7) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.
- (8) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.
- (9) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.
- (10) Desirable cleaners are IPA (Isopropyl Alcohol) or hexane. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (11) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

- (1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with lon-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.
- (2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.
- (3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

- (1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.