Document Title	M060AWRD R0 Tentativ	M060AWRD R0 Tentative Product Specification			1/26
Document No.		Issue date	2022/09/07	Revision	00

Tentative Product Specification

To:

Product Name: M060AWRD R0

Document Issue Date: 2022/09/07

Customer	InfoVision Optoelectronics
SIGNATURE	SIGNATURE
	REVIEWED BY CQM
	PREPARED BY FAE
Please return 1 copy for your confirmation	
with your signature and comments.	

Note : 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	2/26
Document No.		Issue date	2022/09/07	Revision	00

Revision	Date	Page	Revised Content/Summary	Remark
00	2022/09/07		First issued.	
				27

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	3/26
Document No.		Issue date	2022/09/07	Revision	00

CONTENTS

1.0	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	6
3.0	OPTICAL CHARACTERISTICS	7
4.0	ELECTRICAL CHARACTERISTICS	. 10
5.0	MECHANICAL CHARACTERISTICS	. 20
6.0	RELIABILITY CONDITIONS	. 22
7.0	PACKAGE SPECIFICATION	. 23
8.0	LOT MARK	. 24
9.0	GENERAL PRECAUTION	. 25

Document Title	M060AWRD R0 Tentativ	ve Product Spe	ecification	Page No.	4/26
Document No.		Issue date	2022/09/07	Revision	00

1.0 General Descriptions

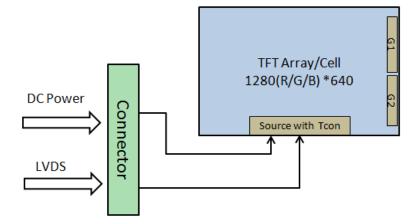
1.1 Introduction

The M060AWRD R0 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 6 inch diagonally measured active display area with WXGA resolution (1,280 horizontal by 640 vertical pixels array).

1.2 Features

- Supported WXGA Resolution
- LVDS Interface
- Wide View Angle
- Compatible with RoHS Standard

1.3 Product Summary


Items	Specifications	Unit
Screen Diagonal	6	inch
Active Area (H x V)	136.32 x 68.16	mm
Number of Pixels (H x V)	1,280 x 640	-
Pixel Pitch (H x V)	0.1065 x 0.1065	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
White Luminance	1000 (Тур.)	cd /m
Contrast Ratio	1000(Typ.)	-
Response Time	30 (Max.)@25℃	ms
Input Voltage	3.3 (Тур.)	V
Weight	140 (Max.)	g
Outline Dimension (H x V x D)	145.52 (Typ.) x 81.51 (Typ.) x 6.4(Typ.)	mm
Electrical Interface (Logic)	LVDS	-
Support Color	16.7M	-
NTSC	75 (Typ.)	%
Reflectance (SCI)	5.6(Max.)	%
Optimum Viewing Direction	All	-
Surface Treatment	HC	-

All rights strictly reserved reproduction or issue to third parties in any form whatever is not permitted without written authority from the proprietor.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	5/26
Document No.		Issue date	2022/09/07	Revision	00

1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

1.5 Pixel Mapping

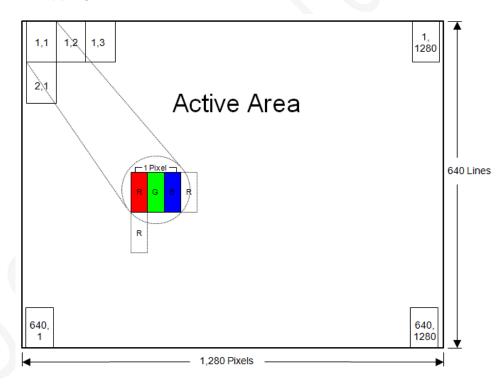


Figure2 Pixel Mapping

Document Title	M060AWRD R0 Tentativ	M060AWRD R0 Tentative Product Specification			6/26
Document No.		Issue date	2022/09/07	Revision	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V _{cc}	(-0.3)	(4.0)	V	
Logic Input Signal Voltage	V _{Signal}	(-0.3)	(3.9)	V	(1),(2),
Operating Temperature	Tgs	-40	85	°C	(3),(4)
Storage Temperature	Ta	-40	90	°C	

Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25° , Humidity: $55 \pm 10\%$ RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 62.7° C, and no condensation of water. Besides, protect the module from static electricity, Only functionality is guaranteed from -30~ -40 °C.

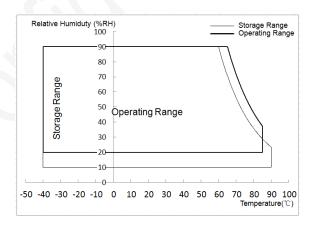
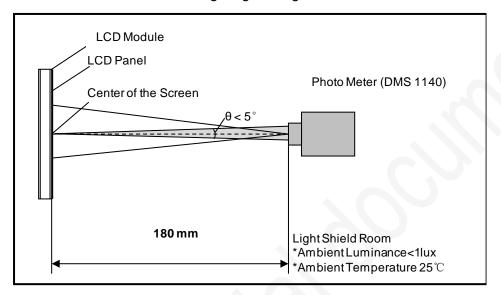


Figure 3 Absolute Ratings of Environment of the LCD Module

Document Title	M060AWRD R0 Tentativ	ve Product Spe	ecification	Page No.	7/26
Document No.		Issue date	2022/09/07	Revision	00

3.0 Optical Characteristics

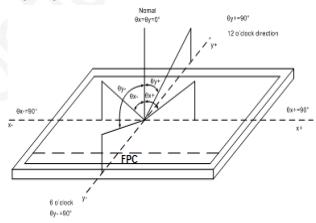
The optical characteristics are measured under stable conditions as following notes.


Table 2 Optical Characteristics

Item		Conditions		Min.	Тур.	Max.	Unit	Note	
			θ+	(80)	(85)	-			
Viewing Angle		Horizontal	θ "-	(80)	(85)	-		(1),(2),(3),(4	
(CR≥10)		Vertical		(80)	(85)	-	degree	(8)	
		ventical	θ _{y-}	(80)	(85)	-			
Contrast Ra	atio	Center		(800)	(1000)	-	-	(1),(2),(4),(8 θx=θy=0°	
25 ℃					-	(30)	5		
Response Time	-20 ℃	Rising + Fallir	Rising + Falling		-	(135)	ms	(1),(2),(5),(8) θx=θy=0°	
	-30 ℃				6	(350)			
		Red x			(0.632)		-		
		Red y Green x Green y			(0.327)	0.327)	-	(1),(2),(3),(8)	
					(0.312)		-		
Color Chror	naticity			Тур.	(0.641)	Тур.	-		
(CIE1931)		Blue x		-0.04	(0.155)	+0.04	-	θx=θy=0°	
		Blue y			(0.061)	-	-		
		White x	White x White y		(0.310)		-		
		White y			(0.324)		-		
SCI		-		-	-	(5.6)	%	-	
NTSC		-		(70)	(75)	-	%	(1),(2),(3),(8 θx=θy=0°	
White Lumi	nance	Central Point		(800)	(1000)	-	cd/m ²	(1),(2),(6),(8 θx=θy=0°	
Luminance		9 Points White		(80)	-	-	0/	(1),(2),(7),(8	
Uniformity		9 Points Black	k	(50)	-	-	%	θx=θy=0°	

Document Title	M060AWRD R0 Tentative Product Specification		Page No.	8/26	
Document No.		Issue date	2022/09/07	Revision	00

Note (1) Measurement Setup:


The LCD module should be stabilized at given ambient temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

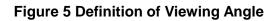


Figure 4 Measurement Setup

Note (2) The LED input parameter setting as: I_{LED}:(270)mA, I_{LED}=(90)mA*3

Note (3) Definition of Viewing Angle

Document Title	M060AWRD R0 Tentative Product Specification		Page No.	9/26	
Document No.		Issue date	2022/09/07	Revision	00

Note (4) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = The luminance of White pattern/ The luminance of Black pattern

Note (5) Definition of Response Time (T_R, T_F)

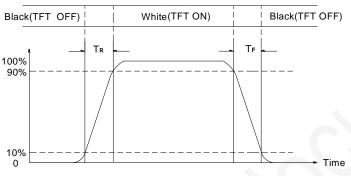
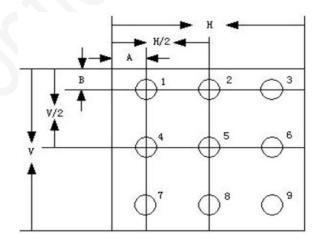


Figure 6 Definition of Response Time

Note (6) Definition of Luminance of White

Measure the luminance of White pattern (Ref.: Active Area)

Display Luminance=L1 (center point)


Note (7) Definition of Luminance Uniformity (Ref.: Active Area)

Measure the luminance of White pattern at X points.

Luminance Uniformity= Min.(L1, L2, ... L9) / Max.(L1, L2, ... L9)

H-Active Area Width, V-Active Area Height, L-Luminance

A=1/6 H, B=1/6 V

Figure 7 Measurement Locations of 9 Points

Note (8) All optical data are based on IVO given system & nominal parameter & testing machine in this document.

Document Title	M060AWRD R0 Tentative Product Specification		Page No.	10/26	
Document No.		Issue date	2022/09/07	Revision	00

4.0 Electrical Characteristics

4.1 Interface Connector

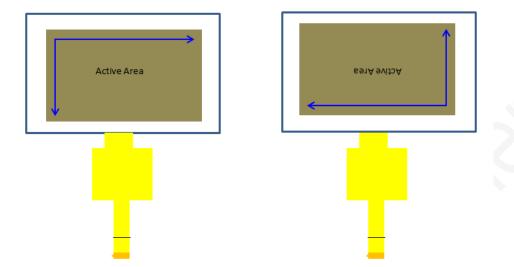
Table 3 Signal Connector Type

Item	Description	
Mating Receptacle / Type (Reference)	0.5-18-40PBX-AU-YW48-P	

Table 4 Signal Connector Pin Assignment

Pin	• • • •		-
No.	Symbol	Description	Remarks
1	NC	No Connection	
2	VCC	Digital Power(+3.3V)	
3	VCC	Digital Power(+3.3V)	
4	NC	No Connection	
5	GND	Ground	
6	BIST	Built-in self test function	
7	GND	Ground	
8	SHLR	Horizontal shift direction(Source output)selection, Default Pull	(1)
9	UPDN	Vertical shift direction(Gate output)selection, Default Pull High(Internal	(1)
		pull high resistor R=350K; Suggest external pull high resistor R=10K)	
10	GND	Ground	
11	GND	Ground	
		Standby mode ,	
12	STBYB	STBYB=1, normal operation	
		STBYB=0, timing control, source driver will off ,all output are GND	
		Global Reset pin. Active low, If RESET connected to GND, the chip is	
13	RESET	in reset state.	
		This pin must meet the sequence of power on/off.	
14	GND	Ground	
		Fail detection signal output.	
15	FAIL_DET	FAIL_DET=High , normal operation	
		FAIL_DET=Low , on error condition	
16	GND	Ground	
17	GND	Ground	
18	LVDS3+	Positive LVDS differential data input	

All rights strictly reserved reproduction or issue to third parties in any form whatever is not permitted without written authority from the proprietor.


Document Title	M060AWRD R0 Tentative Product Specification		Page No.	11/26		
Document No.		Issue date	2022/09/07	Revision	00	

19	LVDS3-	Negative LVDS differential data input	
20	GND	Ground	
21	LVDS_CLK+	Positive LVDS differential data input	
22	LVDS_CLK-	Negative LVDS differential data input	
23	GND	Ground	
24	LVDS2+	Positive LVDS differential data input	
25	LVDS2-	Negative LVDS differential data input	
26	GND	Ground	
27	LVDS1+	Positive LVDS differential data input	
28	LVDS1-	Negative LVDS differential data input	
29	GND	Ground	
30	LVDS0+	Positive LVDS differential data input	
31	LVDS0-	Negative LVDS differential data input	
32	GND	Ground	
33	GND	Ground	
34	ATREN	IVO use on it for test, Please leave this pin open	
35	GND	Ground	
36	SPI_SDA	IVO use on it for test, Please leave this pin open	
37	SPI_SCL	IVO use on it for test, Please leave this pin open	
38	SPI_CSB	IVO use on it for test, Please leave this pin open	
39	NC	No Connection	
40	Vcc_OTP	IVO use on it for test, Please leave this pin open	

Note(1): Selection of scanning mode

SHLR	UPDN	Scanning Direction
SHLK	UPDN	
VCC	VCC	Left to Right, Up to Down
GND	GND	Right to Left, Down to Up
VCC	GND	Left to Right, Down to Up
GND	VCC	Right to Left, Up to Down

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	12/26
Document No.		Issue date	2022/09/07	Revision	00

Table 5 LED Connector Name / Designation

Item	Description
Mating Receptacle / Type (Reference)	0.5-19-10PBX-AU2-P

Table 6 LED Connector Pin Assignment

		9
Pin No.	Symbol	Description
1	LED-PIN1	NTC_A
2	LED-PIN2	NTC_K
3	LED-PIN3	NC
4	LED-PIN4	LEDA
5	LED-PIN5	LEDA
6	LED-PIN6	NC
7	LED-PIN7	LEDK
8	LED-PIN8	LEDK
9	LED-PIN9	LEDK
10	LED-PIN10	NC

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	13/26
Document No.		Issue date	2022/09/07	Revision	00

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics For LVDS Receiver

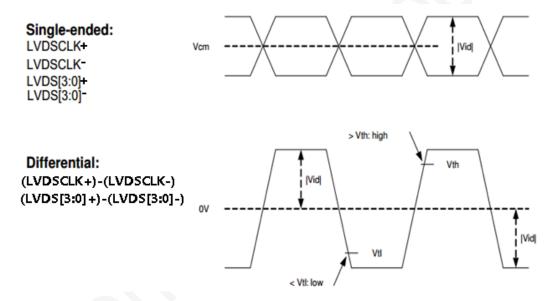
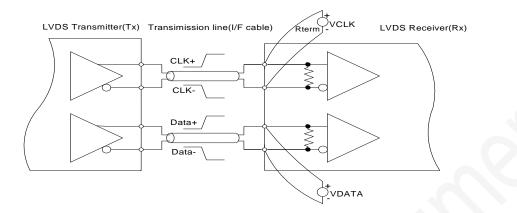

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

Table 7 LVDS Receiver Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Thres	hold	Vth	-	-	(+100)	mV	(V _{CM} =+1.2V)
Differential Input Low Threshold		Vtl	(-100)	-	-	mV	(V _{CM} =+1.2V)
Magnitude Differential	Input	V _{ID}	(150)	-	(600)	mV	
Common Mode Voltage		V _{CM}	(1.0)	(1.2)	(1.7- Vid /2)	V	


Note (1) Input signals shall be low or Hi- resistance state when Vcc is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Figure 8 Voltage Definitions

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	14/26
Document No.		Issue date	2022/09/07	Revision	00

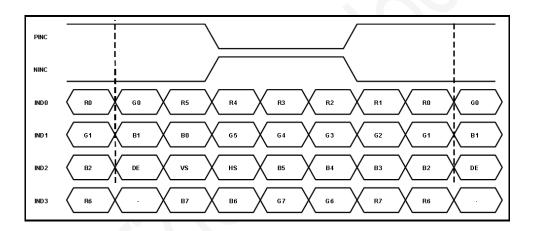


Figure 10 Data Mapping

Document Title	M060AWRD R0 Tentativ	M060AWRD R0 Tentative Product Specification			15/26
Document No.		Issue date	2022/09/07	Revision	00

4.2.2 LVDS Receiver Internal Circuit

Figure 12 shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

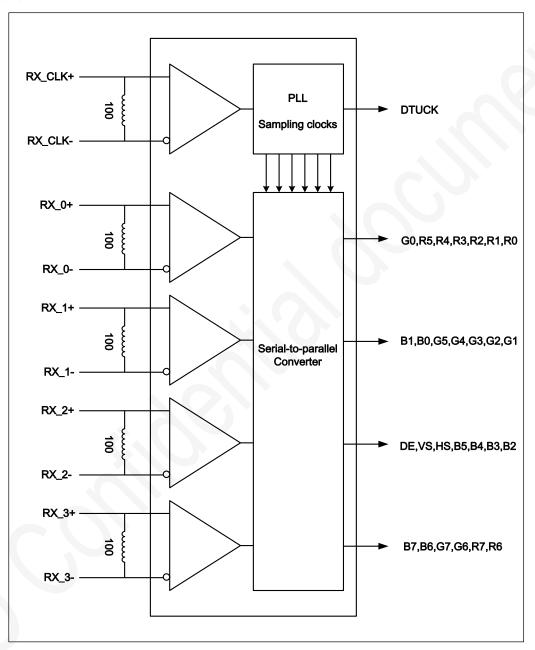


Figure 11 LVDS Receiver Internal Circuit

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	16/26
Document No.		Issue date	2022/09/07	Revision	00

4.3 Interface Timings

Table 8 Interface Timings Parameter Unit Symbol Min. Тур. Max. LVDS Clock Frequency Fclk (51.3)(79.7)MHz (51.8)ΗT H Total Time (1315)(1322)(1660)Clocks H Active Time HA (1280)Clocks V Total Time VT Lines (653)(800)(650) V Active Time VA (640) Lines FV Frame Rate (60) Hz --

Note1: HT * VT *Frame Frequency≤(79.7) MHz

Note2: All reliabilities are specified for timing specification based on refresh rate of 60Hz.

Document Title	M060AWRD R0 Tentativ	M060AWRD R0 Tentative Product Specification			17/26
Document No.		Issue date	2022/09/07	Revision	00

4.4 Input Power Specifications

Input power specifications are as follows.

Table 9 Input Power Specifications

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
System Power	Supply						
LCD Drive Volta	LCD Drive Voltage (Logic)		(3)	(3.3)	(3.6)	V	(1),(2)
Vcc Current	White Pattern	I _{cc}	-	-	(233)	mA	
Vcc Power Consumption	White Pattern	P _{cc}	-	-	(0.7)	W	(1)
Logic Input	High level voltage	N/	(0.7*VCC)		(VCC)	V	(4) (7)
Signal	Low level voltage	· V _{Signal}	(0)		(0.3*VCC)	V	(1),(7)
Logic Output	High level voltage	V	(VCC-0.4)		(VCC)	V	(4)
Signal	Low level voltage	FAIL_DET	(0)	•	(0.4)	V	(1)
Rush Current		I _{Rush}	-	-	(1)	А	(1)
Allowable Logic Drive Ripple Vo		V _{Vcc-RP}	0.7	-	(200)	mV	(1)
LED Power Sup	oply						
LED Input Volta	ge	V _{LED}	(16.8)	(18.6)	(19.8)	V	(1)
LED Power Consumption		P _{LED}	-	-	(5.35)	W	(1),(5),
LED Forward Voltage		V _F	(2.8)	(3.1)	(3.3)	V	(\mathbf{A}) (\mathbf{E})
LED Forward Current		I _F	-	(90)	-	mA	(1),(5)
LED Life Time		LT	(10,000)	-	-	Hours	(1),(4)

Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55 \pm 10\%$ RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) The figures below is the measuring condition of V_{cc} . Rush current can be measured when T_{RUSH} is 0.5 ms.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	18/26
Document No.		Issue date 2022/09/07			00

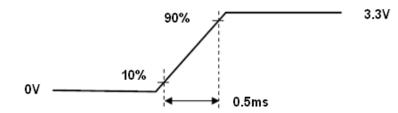
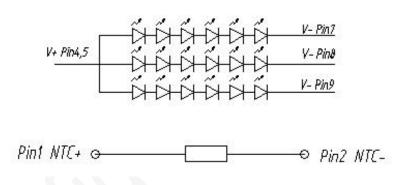



Figure 12 V_{cc} Rising Time

Note (4) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 80% of the minimum value under normal operating condition. Note (5) Definition of VLED and PLED

 $V_{LED} = V_F \times 6$, $I_{LED} = I_F \times 3$, $PLED = V_{LED} \times I_{LED}$

Note (6) The allowable forward current of LED vary with environmental temperature

TBD

Note (7) Logic input signal include SHLR, UPDN, STBYB, RESET, BIST

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	19/26
Document No.		Issue date	2022/09/07	Revision	00

4.5 Power ON/OFF Sequence

1.Interface signals are also shown in the chart. Signals from any system shall be Hiresistance state or low level when Vcc voltage is off.

2. When system first start up, should keep the Vcc high time longer than 200ms, otherwise may cause image sticking when Vcc drop off.

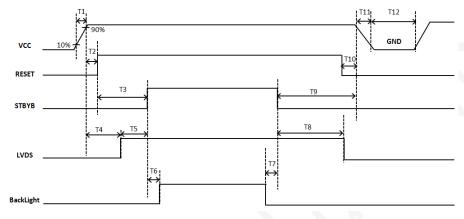


Figure 13 Power Sequence

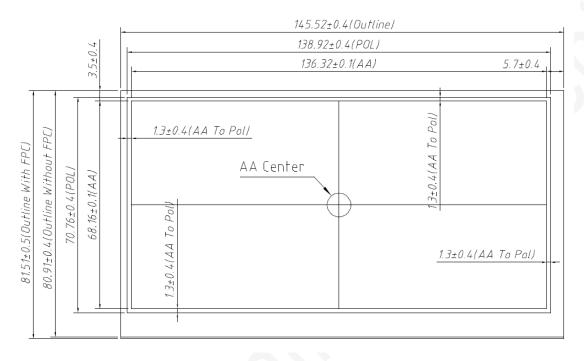
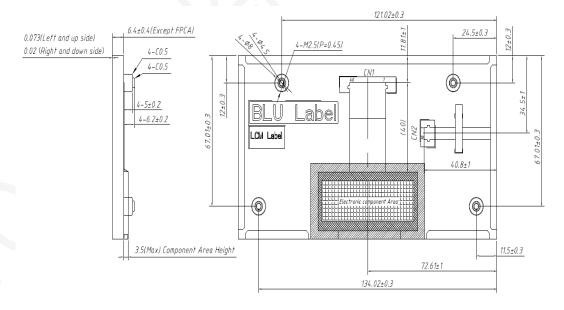

Parameter	Symbol	Min.	Тур.	Max.	Unit
VCC Rise Time	T1	(0.5)	-	(10)	ms
VCC Good to RESET pull H	T2	(10)	-	-	us
RESET pull H to STBYB pull H	Т3	(16)			ms
VCC Good to Signal Valid	T4	(0)	-	(50)	ms
Signal Valid to STBYB pull H	T5	(0)	(10)	-	ms
STBYB pull H to Backlight Power On	Т6	(200)	-	-	ms
Backlight Power Off to STBYB pull L	T7	(200)	-	-	ms
STBYB Pull L to Signal Disable	Т8	(50)	(67)	(83)	ms
STBYB pull L to VCC Power off	Т9	(50)	(67)	(83)	ms
RESET pull L to VCC Power off	T10	(10)	-	-	us
VCC Fall Time	T11	(0.5)	-	(30)	ms
VCC Power off	T12	(500)	-	-	ms

Table 10 Power Sequencing Requirements


Document Title	M060AWRD R0 Tentativ	M060AWRD R0 Tentative Product Specification			20/26
Document No.		Issue date	2022/09/07	Revision	00

5.0 Mechanical Characteristics

5.1 Outline Drawing

Figure 14 Reference Outline Drawing (Front Side)

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	21/26
Document No.		Issue date	2022/09/07	Revision	00

Note (1) Unmarked tolerances: ±0.5mm;

Note (2) IVO Only guarantee that there is no light leak on AA area, the light leak in other places need to be shielded by customer's mechanism;

Note (3) The minimum torque of the stud is 5N;

Note (4) Smooth the Mylar before measuring.

5.2 Dimension Specifications

Item		Min.	Тур.	Max.	Unit		
Width		(145.12)	(145.52)	(145.92)	mm		
Height	Without PCBA	(80.51)	(80.91)	(81.31)	~~~		
	With PCBA	(81.01)	(81.51)	(82.01)	mm		
Thickness		-	(6.4)	(6.8)	mm		
Weight		-	-	(140)	g		

Table 11 Module Dimension Specifications

Note: Outline dimension measure instrument: Length and width were measured using Coordinate Measuring Machine, and thickness test using Vernier Caliper.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	22/26
Document No.		Issue date	2022/09/07	Revision	00

6.0 Reliability Conditions

Table 12 Reliability Condition

	ltem	Package		Test Conditions		
High Temperature/High Humidity Operating Test		Module	T _{gs} =65℃, 90%RH, 500 hours		(1),(2),(3),(4)	
High Temperature Operating Test		Module	Т			
Low Temp	erature Operating Test	Module	Т	a <mark>=-30</mark> ℃, 500 hours	1	
High Tem	perature Storage Test	Module	7	Γ_a =90 $^\circ$ C, 500 hours	(1) (2) (4)	
Low Temperature Storage Test		Module	Т	(1),(3),(4)		
		Madula	50G,11ms,sin			
SHOCK	Non-operating Test	Module	wave,±XYZ×3times,Total 18times			
			10HZ to	50HZ,5.0G,1mm p-p,	(1),(3),(5)	
Vibration Non-operating Test		Module	logarithm			
			sweeps per axis (only y axis)			
		Madula	Contact	±8KV, 150pF(330Ohm)	(1) (2) (6)	
ESD Test	Operating	Module	Air	±15KV, 150pF(330Ohm)	(1),(2),(6)	

Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

Note (2) The setting of electrical parameters should follow the typical value before reliability test.

Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.

Note (4) The sample must be released for 24 hours under normal conditions before judging.

Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° , Humidity: $55 \pm 10\%$ RH. T_a= Ambient Temperature, T_{gs}= Glass Surface Temperature.

Note (5) The module should be fixed firmly in order to avoid twisting and bending.

Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.

Note(7)LED forward current should follow the current of LED vary with environmental temperature.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	23/26
Document No.		Issue date	2022/09/07	Revision	00

7.0 Package Specification

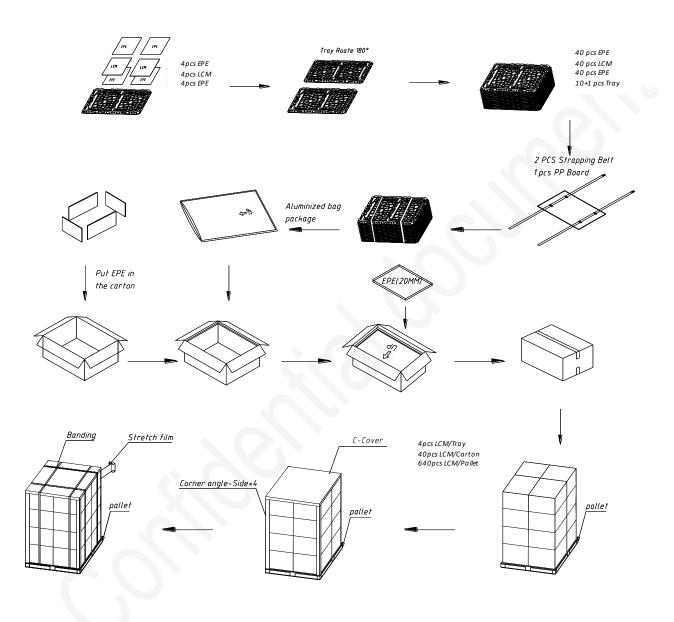


Figure 16 Packing Method

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	24/26
Document No.		Issue date	2022/09/07	Revision	00

8.0 Lot Mark

TBD

Note: This picture is only an example.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	25/26
Document No.		Issue date	2022/09/07	Revision	00

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1)The LCD product should be operated under normal conditions. Normal conditions are defined as below:

Temperature: 25℃

Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

(2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)

(3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.

(4) If the absolute maximum rating value was exceeded, it may damage the module.

(5) Do not adjust the variable resistor located on the module.

(6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.

(7) Image sticking may occur when the module displayed the same pattern for long time.

(8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"

(9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

(1) All the operators should be electrically grounded and with Ion-blown equipment turning on when

mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.

(2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.

(3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.

(4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.

(5) So as to acquire higher luminance, the cable of the power supply should be connected directly with a minimize length.

(6) It should be attached to the system tightly by using all holes for mounting, when the module is assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back.

Document Title	M060AWRD R0 Tentative Product Specification			Page No.	26/26
Document No.		Issue date	2022/09/07	Revision	00

(7) A transparent protective film needs to be attached to the surface of the module.

(8) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.

(9) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.

(10) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.

(11) Clean the panel gently with absorbent cotton or soft cloth when it is dirty. Ethanol(C_2H_5OH) is allowed to be used. Ketone (ex. Acetone), Toluene, Ethyl acid, Methyl chloride, etc are not allowed to be used for cleaning the panel, which might react with the polarizer to cause permanent damage. (12) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

(1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with lon-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.

(2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.

(3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

(1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.

(2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

(3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.